COORDINATED HIGHWAYS ACTION RESPONSE TEAM

STATE HIGHWAY ADMINISTRATION

~r
e

R1B1 High Level Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M361-DS-001R0

June 25, 1999
By

Computer Sciences Corporation and PB Farradyne Inc

E,
¢

!
By

.

Table of Contents

L - INEFOAUCTION ot e e e e e e 1-1
1.1 PUIPOSE ...t e e e e bbb 1-1
A O | o] =Tod €LY PSSR UPTR PR 1-1
1.3 {0l 0] o1 U TP TRT PP 1-1
i N 0] 01/ 1 TSSO RT PP TOPPR 1-1
1.5 DESION PrOCESS ..eeivveiiieieeiiesieesteetesee e stesteestesseessaestaeseessaesaeassesseeseaseesseesseeseesseenseennenrens 1-2
1.6 DESION TOOIS...cuiiiieieciecie ettt e et e et e et esra e reeteeneenreenre s 1-3
1.7 WOPK PrOQUCTS.c.oiiiiiiiiiiieeee ettt 1-3
2 - Software ArChiteCtUre..........uueiiiii e 2-1
2.1 CORBAoooveeeeeeeeeee e 2-1
2.2 CORBA SEIVICES ...ttt sttt bbb bbbt b e b e bttt b et e ane s 2-1

2.2.1 CORBA EVENE SEIVICE.......iitiiiiiitiiieieientete ettt 2-1

2.2.2 CORBA TradiNg SEIVICEccueiviitiiiiiiiiiieieeiieieie sttt ab e 2-2
2.4 Chart 11 APPlICAtION SEIVICES.ciiiiiiiiiiiiieeeeee e 2-2
B —USE CASES ...ttt 3-1
A - ClASSES .ottt ettt e e a e aaeeae 4-1
4.1 COMMENGDIEA (ClASS) ...vveeiiiiiiieeie ettt reenae e sreeneenee e 4-3
4.2 COoMMANASTALUS (CIASS) .vveuveirriiiieiiiiesierie e see ettt steesae e e esae e e sraesteeneesreenseenee e 4-3
T B Tod A To] g F= VA (@ 1= T3 USSR 4-3
O Y NS (O LX) USSR 4-3
4.5 DMSFACLONY (CIASS) ...uviiuiiiiieiiieie ettt sttt sttt bbb e be e e e 4-3
Ol 1Y NS o] o A (O F- 1) ISR 4-3
4.7 DMSLIBbraryFactory (ClaSS)cccueiieiiiieieere e e estesee st ae e ste et ae et e e enee e 4-3
4.8 DMS MESSAQE (ClASS) .. vreuriiuieiieieiiiesieeitesie st te s te et st et e e ssa e ste e sseesbeanaesnaesteeneenreeneeans 4-3
4.9 DMSMesSageLibrary (Class)ccciiieiieeie ettt 4-4
4.10 DMSSOredMSGITEM (CIASS)......iiueiiieiiiieiiee ettt 4-4
4.11 FUNCEIONAIRIGNT (CIASS) ...ttt bbb 4-4

R1B1 High Level Design i 02/25/00

o A U (O F- 1) USROS 4-4

4.13 MULTIStringDefaults (Class).......ccuiiiriiiieiieiieie et 4-4
4.14 OperatioNSCENTEE (CIASS) ...cviiiiiieiiiiesiee et ee e 4-4
4.15 Organization (ClASS)cueiveieiie et e st e e et e st ae e steesaeaneesreeneeaneesne e 4-4
G = g (@ = TSE) ST 4-5
o A - o] o Tod (0 YA (O F- 11 SRR 4-5
418 PIANTTEM (CIASS) ..eeutiiieiiiieitieie ettt sttt bttt ettt sreenbe e e e 4-5
I (o] [l (@ F= L) TSP PR 4-5
4.20 SNAredRESOUICE (CIASS) ...ouviiviiiiaiiiiiieitieie sttt ettt nbe e sre et nne e 4-5
4.21 SharedResourceManager (Class)........cciviieiveiiiieie e 4-5
4.22 StOredDMSMESSAJE (CIASS) ..veuveirieiieeiiiiieiieiesee st e te s e ste e sre e e e steanaesreesseeneesreenee e 4-5
O T Tl (O = T ST 4-5
4.24 UserLoginSeSSION (ClaSS)......uiiueiiiiiiieiieie ettt ne e 4-6
4.25 USEIrManN@QEr (CIASS)....cueiuueiuiiiiiiiesiieiie sttt sttt nbe et sre et enee e 4-6
5—Sequence DIiagramsSoccuui e 5-1
5.1 ActivatePlan:Basic (Sequence DIiagram).......ccoceiiririieieiieeniesie e 5-1
5.2 AddBannedWord:Basic (Sequence DIiagram)ccooeeerieiienienienieenie e 5-2
5.3 AddDMS:Basic (Sequence DIagram)cccooeiiiiinirnieiie e 5-3
5.4 AddPlan:Basic (SeqUENCE DIiagram).........cccevivereeiieriierieeieseesie e e sie e e saeseesseeseesneeses 5-4
5.5 AddUser:AddUser (Sequence DIiagram)ccceiverieieereeieseesieseesieeseeseessesseesseesessseeses 5-5
5.6 BlankDMS:Basic (Sequence DIiagram)..........ccccveueiieireiieseese e e sie e e e see e ses e ses 5-6
5.7 ChangeUser:Basic (Sequence DIagram).......ccccoeieeieiieneeniesee e siee e ses e eeesnes 5-8
5.8 CreateDMSMessageLibrary:Basic (Sequence Diagram)ccoccevvevenieniennienenninseenees 5-9
5.9 CreateDMSStoredMessage:Basic (Sequence Diagram)cccoccevveeeneeneniieseenesennnens 5-10
5.10 CreateNewRole:Basic (Sequence Diagram)........cccocvererieerieeresieesesieseesiesieesieeseesaennens 5-11
5.11 DeleteDMS:Basic (Sequence Diagram)cccccecvereeierieeseseeseeeeseesieseeseeseeseesseeeens 5-12
5.12 DeleteDMSMessageL.ibrary:Basic (Sequence Diagram)cccocevevvvenienieseenesieennens 5-13
5.13 DeleteDMSStoredMessage:Basic (Sequence Diagram)ccccoeveeeiieneniennesiieseennens 5-14
5.14 DeletePlan:Basic (Sequence DIagram)ccocueieerinieiieniesee e see e siee e seesreeneens 5-15

R1B1 High Level Design i 02/25/00

5.15 DeleteRole:Basic (Sequence DIagram)ccccoueieeriiieieenieseesiesie e see e see e sieeneens 5-16

5.16 DeleteUser:Basic (Sequence DIagram)cccoiieeiiaienieenesie e see e siee e sseeneens 5-17
5.17 ForceLogout:Basic (Sequence DIagram).........ccceeeiienieiieseeniesee e sieesee e sieeee s 5-18
5.18 GrantRole:Basic (Sequence DIiagram)cccceceeieiieireieseeseeee e e see e see e ssaennens 5-19
5.19 Login:Basic (SeqUueNCe DIagram)........ccccciveiueiieereeieseesieseeseesiesseesseeseesseesseesaesseessesnsens 5-20
5.20 Logout:Basic (SeqUeNCe DIagram)ccccveiueiieereeieseesieeeeseesiesseeseessesseesseesseseesseensens 5-21
5.21 ModifyDMSStoredMessage:Basic (Sequence Diagram)........ccccoeeeeereerenieenesieeseennens 5-22
5.22 ModifyPlan:Basic (Sequence DIagram)cccooerieieerinie e see e see e 5-23
5.23 ModifyRole:Basic (Sequence DIagram)ccoceoeererieieeniesie e see e sie e 5-25
5.24 MonitorControlledResources:Basic (Sequence Diagram).........ccccoecevvererieesesiesinennens 5-26
5.25 PolIDMS:Basic (Sequence DIiagram)cccceiieereerienieeseesieseesieseeseesseseesseessesssessaessens 5-27
5.26 RemoveBannedWord:Basic (Sequence Diagram)........cccccvevevieerenriesieeseeieeseeseeseenaens 5-28
5.27 ResetDMS:Basic (Sequence DIagram)ccccoueiierieiiriieiee et see e 5-29
5.28 RevokeRole:Basic (Sequence DIagram)cccceiieriiieiieneniesieeie e 5-31
5.29 SetDMSL.ibraryName:Basic (Sequence DIagram)........cccoceeereeieniinniceiieneesiesiee e 5-32
5.30 SetDMSMessage:Basic (Sequence DIagram)cccccevvereereiieesesieseesieseesieessesaesses 5-33
5.31 SetDMSName:Basic (Sequence DIagram)cccecveverieeresiieseesiesee e esee e e sneesaenaes 5-35
5.32 SetDMSOffline:Basic (Sequence DIagram)ccoveueieenenieneeie e 5-37
5.33 SetDMSOnline:Basic (Sequence DIagram)........ccocueieeririeeieenesee e e see e 5-39
5.34 SetDMSPollinglInterval:Basic (Sequence Diagram).........cccoceiverieeneeneniieseeniesieesieenens 5-41
5.35 TransferResponsibility:Basic (Sequence Diagram)cccocceveviereeresiesieenesieeseenens 5-42
5.36 ViewDMSStatus:Basic (Sequence DIagram)cccccceevvereiieenesieeseesieseeseeseesseeseeeens 5-43
B — PaACKAGING .. oeeeti i aaa 6-1
7 - DEPIOYMENT ..o 7-1
8 — Interface Definition Language (IDL)ccovviiiiiiiiiiiiieiieeeee e, 8-1

R1B1 High Level Design iii 02/25/00

1 - Introduction

1.1 Purpose

This document describes the high level design of the Chart Il software for Release 1, Build 1.
This design is driven by the Release 1, Build 1 requirements as stated in document CHARTII-
RS-001-00, “CHART I System Requirements Specification For Release 1 Build 1.”

1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to
provide detailed design and implementation of the software components used to satisfy the
requirements of Release 1, Build 1 of the Chart Il system.

This design also serves to provide documentation to those outside of the software development
community to show how the requirements are being accounted for in the software design.

1.3 Scope

This design is limited to Release 1, Build 1 of the Chart 1l system and the requirements as stated
in the aforementioned requirements document.

1.4 Acronyms

The following acronyms appear throughout this document:

CORBA Common Object Request Broker Architecture
DMS Dynamic Message Sign

FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

ORB Object Request Broker

UML Unified Modeling Language

R1B1 High Level Design 1-1 02/25/00

1.5

Design Process

Object oriented analysis and design techniques were used in creating this design. As such, much
of the design is documented using diagrams that conform to the Unified Modeling Language
(UML), a de facto standard for diagramming object oriented designs.

In addition to being object oriented, this design incorporates distributed object techniques, which
allow for great flexibility and scalability of the system. In a distributed object system, objects
can be deployed in servers throughout the network. This design addresses the partitioning of
object types into specific server applications for this release.

The design process is very iterative, with each step possibly causing changes to previous steps.
Listed below is the process that was used to create the work products contained in this document:

The team first created a use case diagram to reflect the requirements listed in the
requirements diagram. Each requirement was mapped to at least one use case. The
mapping was documented in the DOORS requirements tool.

A straw man class diagram was created with major entities evident in the use cases being
listed as possible classes in the system. High level relationships between the classes were
discovered and documented on the class diagram.

A sequence diagram was created for each use case, showing how the classes on the class
diagram would be used to perform the use case. This often involved changes to the class
diagram, such as adding classes, moving responsibilities between classes, or adding
operations to a class. Sometimes the changes affected other sequence diagrams as well.

After the process of creating sequence diagrams and associated changes to the class
diagram, internal reviews were used to resolve remaining issues.

To enable the design to be manageable when taken into the detailed design phase, the
design was broken into packages, grouping classes with a high amount of dependency
together. This partitioning is documented on a package diagram. During this partitioning
it was also decided which interfaces were needed to be used by other packages, thus
defining the CORBA objects in the system.

Using the class diagram as well as the sequence diagrams, the IDL for each of the
CORBA objects was specified.

A deployment diagram was created to show which applications would be responsible for
each CORBA object.

A second deployment diagram was created to show where each application would be
deployed on the network.

R1B1 High Level Design 1-2 02/25/00

1.6 Design Tools

The system requirements are stored in a tool named DOORS in a project named Chart 11 under a
formal document named R1B1. Within the R1B1 document, an attribute was added by the
design team to specify the use case(s) that map to each requirement.

The work products contained within this design (with the exception of the IDL) are extracted
from the COOL:JEX design tool. Within this tool, the design is contained in the Chart 11 project,
Release 1 configuration, Analysis phase, system version Core Classes 2.

The IDL was created through referring to the Class, sequence, and package diagrams contained
within this document. A text editor (textpad32) was used for the actual creation of the IDL files.

1.7 Work Products
This design contains the following work products:

* A UML Use Case diagram, showing the different uses the system provides to the end
user.

* A UML Class diagram, showing the high level software objects which will allow the
system to accommodate the uses of the system described in the Use Case diagram.

» UML Sequence diagrams, one for each use case, showing how the classes interact to
accomplish a use of the system.

* A UML Package diagram, showing how the classes are broken up into manageable
software packages.

* A UML Deployment diagram, showing which servers will serve each class of objects.
While this is not the typical use of a deployment diagram, the team found this
diagram to meet their needs for describing this aspect of a distributed system.

* A UML Deployment diagram, showing where servers and GUIs will be deployed.
* OMG IDL for the distributed objects that will exist in the system.

R1B1 High Level Design 1-3 02/25/00

2 - Software Architecture

The architecture used in Release 1, Build 1 is not limited to meeting the requirements for this
single build and instead is designed as the building block for the entire Chart Il system. Driven
by the requirements of the Chart Il system and taking into account guidelines for a national ITS
architecture, the Chart 11 system is designed as a distributed object system utilizing the Common
Object Request Broker Architecture (CORBA) as the base architecture. The remainder of this
section discusses how CORBA is to be applied as the Chart 11 software architecture.

2.1 CORBA

CORBA is an architecture specified by the Object Management Group (OMG) for distributed
object oriented systems. The CORBA specification provides a language and platform
independent way for object oriented client/server applications to interact. The CORBA
specification includes an Object Request Broker (ORB) which is the middleware used to allow
client/server relationships between objects. Using a vendor’s implementation of an OMG ORB,
software applications can transparently interact with software objects anywhere on the network
without the application having to know the details of the network communications.

Interfaces to objects deployed in a CORBA system are specified using OMG Interface Definition
Language (IDL). Applications written in a variety of languages or deployed on a variety of
computing platforms can use the IDL to interact with the object, regardless of the language or
computing platform used to implement the object.

Included in this design document is the IDL for CORBA objects that provide the functionality
for Release 1, Build 1 of the Chart Il system.

2.2 CORBA Services

Included in the OMG CORBA specification are specifications for application servers that
provide basic functionality that is commonly needed by distributed object systems. While there
are specifications for many such services, many services have not yet been implemented. Of the
CORBA Services that are available, the CORBA Event Service and CORBA Trading Service are
utilized in the CHART Il system. A description of each of these services follows.

2.2.1 CORBA Event Service

The CORBA Event Service provides for a way to provide data updates within the system in a
loosely coupled fashion. This loose coupling allows applications with data to share to pass the
information via the event service without needing to have knowledge of others that are
consuming the data.

Data passed through the event service is done using event channels. Many different types of
events may be passed on a single event channel. Interested parties may become consumers on a
given event channel and receive all events passed on the channel.

The CHART 1l system makes use of multiple event channels to allow event consumers to be
more selective about the type of events they receive. Also, event channels of the same type may

R1B1 High Level Design 2-1 02/25/00

exist in multiple regions, allowing the CHART 1l system to be expandable and multi-regional.
Event channels used in the CHART |1 system are published in the CORBA trading service to
allow others to select which events they wish to consume.

2.2.2 CORBA Trading Service

The CORBA Trading Service is an online database of objects that exist in a distributed object
system. Servers which have services to offer publish their objects in the trading service.
Applications that wish to use the services provided by a server can query the Trading Service to
find objects based on their type or attributes.

CORBA Trading Services can be linked together into a federation. Queries done on single
Trading Service can be made to cascade to all linked Trading Services as well. This feature
allows Trading Services serving single regions to be linked together, providing seamless access
to all objects in the system.

The CHART Il System utilizes the CORBA Trading Service to allow the GUI to discover
objects in the system that it allows the user to interact with. Using the linking capabilities of the
Trading Service, the CHART 11 system can be distributed to multiple districts with the GUI still
able to provide a unified view of the system to the users.

2.4 Chart Il Application Services

Custom application servers built for the CHART 11 system are used to house the CORBA objects
that provide the functionality of the system. These application servers provide services to the
objects contained within them, such as database connectivity, event channel management, and
object publication. The design of each of these objects and their interaction is addressed in
following sections of this document.

R1B1 High Level Design 2-2 02/25/00

3 — Use Cases

The following diagram shows the possible uses of the Chart 11 Release 1, Build 1 system. These
uses of the system are derived directly from the Release 1, Build 1 requirements document.

Set DMS Online’
«uses» ~_ <
X
@ Transfer
Responsibility m
=

«extends»

«exlends>>/
/ Reset DMS

«extends» /
«extends» «uses» Filis
Subsystem

L

Blank DMS

«extends»

I\
Operator
«extends»

View DMS Status
—

Log System
Operation

Set DMS Message,

«uses» =
«uses»
All use cases
use this

View DMS True Display
~_

ManagePlans
«uses»

«extends»

«extends»

«extends»

ActivatePlan

AddPlan
DeletePlan
ModifyPlan
«extends»

)
Manage Stored Messages
G

«extends»

Create DMS
Stored Message.
—_—

«extends»
Modify DMS
Stored Message

Edit DMS Message Library

«extends» «extends»

Set DMS Library Name,

«extends».

«extends»

«extends»

Delete Role

o
Monitor
Controlled
Resources
Syst
ystem Mgr:ﬁ%e Delete DMS
——«USes» Stored Message Modify Role

Configuration elete DMS Message Library

\«extends»
«extends» _Delete DMS
«extends» Set DMS Name,
Add DMS /¥/

«extends»

Create New Role
it

Add User)——«uses»

«extends»

Watchdog
/
Alarm

«extends»

B

Grant Role

Manage Banned
s

«uses»
Set DMS Polling Interval

Q «extends.
extends:
«extends» Remove \Z £X «extends» p 3
add Banned <
Word Modify DMS Settings, extends:
Banned “ 7 sexdends» Revoke Role
Word
«extends»

P

Admml‘s_trator

N Can do all things AN
an Operator can do

«extends» Delete User

Figure 1. ReleaselUseCaseDiagram (Use Case Diagram)

Manage Users,

02/25/00

R1B1 High Level Design

4 - Classes

The following class diagram shows the classes required to provide the use cases of the system.
The relationships between the classes are shown as well as methods and attributes. Refer to the
class descriptions provided below the diagram for an overview of the purpose of each class.

R1B1 High Level Design 4-1 02/25/00

UserManager
1
createUser
deleteUser
getUsers
getRoles
getUserRoles
* getRoleFunctionalRights
* setRoleFunctionalRights
createRole
User deleteRole
changeUserPassword
miusemamde setUserRoles
m_passwor grantRole
revokeRole
CommandsStatus GuI
String m_current
String m_desc * *
Role
update(String status):void 1
completed(String final_status) 1 m_name
getDescription() m_description FunctionalRight
0.1
0.1 m_id
UserLoginSession m_name
m_desc
m_username m_orgFilter
OperationsCenter
getOpCenter
m_id 1 * | getUserfname
m_name ping
forceLogout
getiD
getName
1 loginUser(UserLoginSession,name,password)
logoutUser
Organization getNumLoggedinUsers
isUserLoggedin
P getControlledResources
organizationid getLoginSessions
organizationName TorceLogout
B se(SesgsionLoggingOul SharedResource * 1 SharedResourceManager
m_controllingOpCenter
1| Is Owned By m_ownerOrg
m_id CommEnabled getResources
getControlledResources(OpCenter)
* | getiD m is_offline hasControlledResources(OpCenter)
setControlingOpCenter - monitorControlledResources
Owns | getControlingOpCenter .
clearControllingOpCenter (emeo(%ﬁgge
getOwnerOrg p {OfflineF!
canModify setoftlineFlag p
isOffline DMSLibraryFactory
% m_libraryCollection
createLibrary
DMS Message DMSFactory getLibraryList
getPlansUsingLibrary
m_multiString . 1
setMuliString 0.1 * DMS DMSFont crealebMS
getMultiMVe ge renders
getPlainTextMessage m_dmsSignType messages | m_fontHeight *
getMessagelLength m_vmsSignHeightPixels using | m_characterWidth
formatMessage m_vmsSignWidthPixels DMSMessageLibrary
m_vmsCharacterHeightPixels createPixelMap
m_vmsCharacterWidthPixels m_id
m_dmsMessageMultiString m_name
Dictionary m_dmsMessageBeacon m_createdBy
m_dmsTimeCommloss MULTIStringDefaults
m id « | m_shortErrorStatus getiD
m_bannedWordList m_defaultustificationLine setName
checks msg m_vmsMaxPages m_defaultPageOnTime Qgg\ﬁeme
getlD contents using m devicelD m_defaultPageOffTime a ssage
checkForBannedW ords mhama * removeMessage
addBannedW ordList m_location setDefLine. n modifyMessage
removeBannedWordList m_agentHostname getDefLineJustification getStoredMessages
getBannedWords m_snmpCommunityName setDefPageOnTime getPlansUsingMessage
m_netConnectionSite getDefPageOnTime remove
m_pollinterval setDefPageOffTime
m_statusChangeTime getDefPageOffTime 1
m_configurableCommLoss
setDMSName *
getDMSName
ng:::g: StoredDMSMessage
blankSign m id
isBlank -
setPollinterval DMSStoredMsgltem m_messageDescription
getPollinterval . mfm&ssageT%{ Ml
getMaxPollinterval 1 m_isMessageTextMult
getStatusChangeTime m tc):tegoryo
getStatus activate m_peaconson
resetController setDMS m_lastModifiedBy
poliNow setMessage
getSignMetrics getlD -
getFontMetrics getMessageDescription
getMaxPages setMessageDescription
setCommLossTimeout getMessageContent
getCommLossTimeout Plan setMessageContent
getOperationalStatus getMinCharacters
getNetConnectionSite m id remove
createPlanltem -
remove m_name Planitem
getSignType getiD 1 | m id
PlanFactory m_name
getName
m_devicePlanCollection | 1 * | additem getiD
removeltem setName
createPlan activate getName
getPlans Qelj“.emséb, " activate
etPlansUsingObject 1sUsingObjec remove
g 900 remove isUsingObject
R1B1 High Level Design 4-2 02/25/00

4.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications
turned on or off. This typically only applies to field devices.

4.2 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of
an asynchronous operation. This is typically used by a GUI when field communications are
involved to complete a method call, allowing the GUI to show the user the progress of the
operation. The long running operation calls back to the CommandStatus object periodically
as the command is executed and makes a final call to the CommandStatus when the
operation has completed. The final call to the CommandStatus from the long running
operation indicates the success or failure of the command.
4.3 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS.
In addition to methods for checking the words, it has methods to allow the contents of the
dictionary to be changed.

4.4 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for
controlling and maintaining the status of the DMS within the system.

4.5 DMSFactory (Class)

The DMSFactory provides a means to create new DMS objects to be added to the system.

4.6 DMSFont (Class)

This class contains the functionality for translating text messages into pixels for display on
a DMS.

4.7 DMSLibraryFactory (Class)

This class is used to create new DMS libraries and maintain them in a collection.

4.8 DMS Message (Class)

This class represents a text message which is capable of being displayed on a DMS. It
contains methods for input and output of the message in different formats.

R1B1 High Level Design 4-3 02/25/00

4.9 DMSMessagelLibrary (Class)

This class represents a logical collection of DMS messages which are stored in the
database.

4.10 DMSStoredMsgltem (Class)

This class represents a plan item that is used to associate a stored DMS message with a
specific DMS. When the item is activated, it sets the message of the DMS to the stored
message to which it is linked.

4.11 FunctionalRight (Class)

The FunctionalRights class represents the right to perform an action or set of actions. The
functional right can be limited to apply to a single organization's shared resources. If the
filter is not used, the functional right applies to all organization's shared resources.

4.12 GUI (Class)

This class represents the Graphical User Interface application at a high level. The GUI uses
the CommandsStatus class to track the progress of long running operations. The GUI serves
a UserLoginSession object to represent a user that is logging in or logged into the system.
The GUI provides this UserLoginSession object to the server, allowing the server to
monitor the presence of the GUI application.

4.13 MULTIStringDefaults (Class)

This class contains the model-specific default values for creating MULT] strings for a
DMS. MULTI is a standard mark-up language specified by NTCIP for specifying how a
text message is to be displayed by a DMS.

4.14 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to
force users to logout for system maintenance.

4.15 Organization (Class)

The Organization class represents an organization that participates in the Chart system

R1B1 High Level Design 4-4 02/25/00

through ownership of shared resources. The Organization can be used in conjunction with
functional rights to determine the level of access users have to shared resources owned by a
given organization. This allows access to be granted to a user to perform controlled
operations on shared resources owned by one organization but not another.

4.16 Plan (Class)

This class has a collection of Plan Items which it maintains. It has functionality for
changing the plan items, and also allows the plan to be activated, which has the effect of
activating each plan item in the plan.

4.17 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the
system.

4.18 Planltem (Class)

This class represents an action within the system that can be planned in advance. This
abstract class is subclassed for specific actions that can be planned in the system.

4.19 Role (Class)
A Role is a collection of functional rights. A Role can be granted to a user, thus granting
the user all functional rights contained within the role.
4.20 SharedResource (Class)
The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.
4.21 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center.

4.22 StoredDMSMessage (Class)

This class represents a stored DMS message which is created by the DMS Message Editor
and stored in the database. It can be displayed on multiple DMS models and contains an
attribute stating the minimum width of a sign that can display the message in its entirety.

4.23 User (Class)

R1B1 High Level Design 4-5 02/25/00

The User class represents a Chart 11 system user. In order to log into the Chart Il system, a
user must be defined in the user database.

4.24 UserLoginSession (Class)

The UserLoginSession class is used to store information about a user that is logged into the
system. This object is served from the GUI and provides a means for the servers to call
back into the GUI process.

4.25 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B1 High Level Design 4-6 02/25/00

5 — Sequence Diagrams

This section shows a sequence diagram for each Use Case in the system. These sequence
diagrams show at a high level how the classes interact to perform each task.

5.1 ActivatePlan:Basic (Sequence Diagram)

A previously created plan that exists in the system can be activated by a user having the proper
functional rights. The concept of plans is generic in nature. This diagram shows the activation
of a plan containing plan items used to set messages on DMSs. Since activating a plan may
involve many field communications, a command status object is used to track the progress of the
plan activation. Each plan item in the plan is activated, with a command status object being used
to track the progress of each plan item activation. The Plan monitors the progress of each item
activation and reports a status back to the caller.

o

N

Operator

Plan

create

activate:

[not authorized]
no rights

CommandStatus
j

getitems

[* for each item]

create

[* for each item]
activate

DMSStoredMsagltem

StoredDMSMessage

CommandStatus

geText

getBeaconState

Je

nmandQueued

o

[last item activated &&
failure in

""""""" successfully queued]----------{

queueing any command]
failure

[all commands

success

The Device Plan asynchronously
monitors each of the
CommandStatus objects created
for each plan item and

relays a summary status back

~imonitortemCommandStatus

to the command status passed
into the Device Plan activate call

update

completed

[0 1

~7| command to

completed

Figure 3. ActivatePlan:Basic (Sequence Diagram)

See the SetMessage
~1 Sequence diagram for
details

This may take B

a while for the

execute; however, it's
done on another thread
so it won't hold up the
GUL. The command
status for each command
will be updated

whenever each
command succeeds or
fails. Individual command
failures will be reported

to the user.

R1B1 High Level Design

5-1

02/25/00

5.2 AddBannedWord:Basic (Sequence Diagram)

Banned words may be added to the dictionary by a user having the proper functional rights.
When words are added to the dictionary, the event service is used to push the changes to the
dictionary to interested parties, which would include any process that chooses to cache a local
copy of the dictionary to limit the number of network calls for checking message contents.
Caching would most likely be used by the GUI so that it can provide dynamic word checking
without having to make many network calls while the user is typing. Note that even if a cache of
the dictionary is used by a client, all final checking for banned words is done on the server side
prior to sending the message to the actual sign.

@)
Dictionary CosEvent.PushConsumer
Operator
addBannedWordList—=>

[not authorized]
no rights

addBannedWordstoDatabase

push
(added banned words)

words added----------1

Figure 4. AddBannedWord:Basic (Sequence Diagram)

R1B1 High Level Design 5-2 02/25/00

5.3 AddDMS:Basic (Sequence Diagram)

A DMS is added to the system using the DMS Factory. This involves creating a new DMS
object, setting up the proper configuration within the FMS subsystem, publishing the

existence of the DMS in the CORBA trading service, and notifying interested parties of the
new DMS via the CORBA event service.

% DMSFactory CosTrading.Reqister || CosEvent.PushConsumer EMS
Administrator
createDMS
[not authorized] ______|
noRights
Create DMS
addDMS
—addToDatabase—‘
export
push
(DMS ior)

Figure 5. AddDMS:Basic (Sequence Diagram)

R1B1 High Level Design 5-3 02/25/00

5.4 AddPlan:Basic (Sequence Diagram)

A user with the proper functional rights may add a plan to the system. Once the plan is
added to the system, plan items may be added to it using the ModifyPlan use case.

X

Operator

PlanFactory

E— [not authorized]

no rights

createPlan———>

CosTrading:Reqister

CosEvent:PushConsumer

create

updateDatabase

export

push

Figure 6. AddPlan:Basic (Sequence Diagram)

R1B1 High Level Design

02/25/00

5.5 AddUser:AddUser (Sequence Diagram)

A user possesing the proper functional rights may add another user to the system. This

involves storing the user configuration information in the database.

X

Administrator

o not authorized for function

User Manager

createUser—>

[noRights]

Data Error

[failure]

Figure 7. AddUser:AddUser (Sequence Diagram)

addUserToDatabase

R1B1 High Level Design

5-5

02/25/00

5.6 BlankDMS:Basic (Sequence Diagram)

A user possessing the proper functional rights may blank the display (including beacons) of
a DMS. DMS objects that are offline cannot be communicated with. Blanking a DMS also
involves the concept of shared resource management, allowing only the controlling
operations center to blank a DMS (unless the user has the override functional right). Once
clear to perform the operation, the command is queued within the DMS object and the user
is notified that a long running operation is in progress. The supplied CommandStatus
object is used to notify the caller of the ongoing progress. When the DMS pulls the blank
command off its internal queue, it executes the command using the FMS subsystem. If the
command is successful, the controlling operations center is cleared since the DMS is no
longer being used to display a message. The CORBA event service is used to push state
changes of the DMS, for both the action of the sign being blanked and the controlling
operations center being removed.

R1B1 High Level Design 5-6 02/25/00

X

o DMS CommandQueue EMS CosEvent.PushConsumer
perator —
Ccreate CommandStatus
blankSign
. 1
isOffline
’ [offline]
i[socf)ﬂflfrl}ﬁla completed
[not authorized for function] S
| _..[not authorized for function]... completed
noRights

Preliminary 80-20 rule
check. lItis not valid if
there are other commands | canModify
in the queue that could B S i
alter the controlling op ctr

- [can't modify]
L] [can't modify] ! —>
noRights completed
create BlankDMSCommand
addCommand
S commandQueued------1

Other previously
queued commands
execute here, it may
take a long time
before execution of
this command begins.

—execute—>
isOffline [offine]
) completed
canModify 1 _[can't modify]
completed
.
Need to check blankSign >
the functional ﬂ
rights again here :)Iink&gn n'luay
incase a ake several
previously queued seconds. It
command changed must also clear
the controlling op any beacons
center
blankSign response-
[success]
[success] push (blanked sign)

clearControllingOpCenter

[controlling op ctr changed]
push (changed controlling op ctr)

—completed—>

execution
——delete—>}

X

Figure 8. BlankDMS:Basic (Sequence Diagram)

R1B1 High Level Design 5-7 02/25/00

5.7 ChangeUser:Basic (Sequence Diagram)

There is a requirement for someone to be logged into the system at an operations center at
all times that the operations center is in control of any shared resources in the system. To
accomodate shift changes when there is only one user logged in at the operations center, a
feature is provided to allow the user to be changed without actually logging out. Internally,
this is accomplished by actually having two users logged in during the transition, logging in
the second user prior to logging out the first.

i Operations Center

Operator

loginUser

Refer to Login:Basic SD for details Iﬁ

[new user logged in]
logoutUser

Refer to Logout:Basic SD for details Il‘

Figure 9. ChangeUser:Basic (Sequence Diagram)

R1B1 High Level Design 5-8 02/25/00

5.8 CreateDMSMessageLibrary:Basic (Sequence Diagram)

A user possessing the proper functional rights can add a DMS Message Library to the
system. The library object is created and published via the CORBA Trading Service. An
event is pushed via the CORBA Event Service to notify interested parties of the new

library.

DMSLibraryFactory

X

Operator

no Rights

S Library created

createLibrary—>}

<___[no authorized for function]]...

create

updateDatabase

DMSMessageLibrary

CosTrading:Reqister

CosEvent:PushConsumer

export

push

[new library]

Figure 10. CreateDMSMessageL ibrary:Basic (Sequence Diagram)

R1B1 High Level Design

02/25/00

5.9 CreateDMSStoredMessage:Basic (Sequence Diagram)

A user with the proper functional rights can create a new DMS message to be stored for
later use. The contents of the message are checked against a dictionary prior to storing. If
approved, the messsage is stored and its existence is pushed to interested parties via the
CORBA Event Service. Note that even though a dictionary check is done at the time of
storage, the dictionary is always checked on the server side prior to allowing a message to
be set on a DMS. Note also that stored messages are not published in the trader and are
instead accessed through the library in which they are contained.

DMSMessageLibrary

X

Operator

[not authorized)]
no rights

failure

[<------Message created

addMessage—>

——checkForBannedWords

——Create——>

Stored DMS Message

updateDatabase

push

Dictionary

CosEvent.PushConsumer

new message created)

Figure 11. CreateDMSStoredMessage:Basic (Sequence Diagram)

R1B1 High Level Design

5-10

02/25/00

5.10 CreateNewRole:Basic (Sequence Diagram)

A user with the proper functional rights can add a role to the system. This role is used as a
collection of functional rights that can easily be assigned to users.

X

Administrator

User Manager

—createRole——>

é___not authorized for function___

[noRights]
I
addRoIeTc|>Database
P Validation Error___________:
[failure]
oo Role Created----"

Figure 12. CreateNewRole:Basic (Sequence Diagram)

R1B1 High Level Design 5-11 02/25/00

5.11 DeleteDMS:Basic (Sequence Diagram)

A user with the proper functional rights can remove a DMS from the system. This involves
revoking the offer of the DMS from the CORBA Trading Service, removing configuration

data from the FMS subsystem, and pushing an event via the CORBA event service.

£

DMS CosTrading.Register | | CosEvent.PushConsumer FMS

Administrator

remove

e, [not authorized] i
noRights
withdraw
Update Database
removeDMS
push
(DMS Removed)
Figure 13. DeleteDMS:Basic (Sequence Diagram)

R1B1 High Level Design 5-12 02/25/00

5.12 DeleteDMSMessageLibrary:Basic (Sequence Diagram)

A user with the proper functional rights can remove a DMS Message Library from the
system. This will include the removal of all stored messages contained within the library.
Since stored messages may be used in Plans that contain DMSStoredMessageltems, a check
is made for any plans that may contain the stored messages being deleted and the user is
warned. If the user acknowledges the deletions, each message within the library is
removed, events are pushed to notify others the action, and the library is removed from the
Trading Service.

Q

<

GuUI DMSMessageLibrary StoredDMSMessage PlanFactory CosTrading:Reqister | | CosEvent.PushConsumer
Operator
[—deleteDMSLibrary—>
—getPlansUsingLibrary—> [* for each message]
getPlansUsingObject

S plans using library -

[plans using library]
<" Warn User

remove-

[not authorized]
no rights

i __[* for all stored messages S
remove

push
[message deleted]

Update Database

X

withdraw

___push
S — Message library deleted----------------------4 [library deleted]

Figure 14. DeleteDMSMessageL ibrary:Basic (Sequence Diagram)

R1B1 High Level Design 5-13 02/25/00

5.13 DeleteDMSStoredMessage:Basic (Sequence Diagram)

A user with the proper functional rights may remove a stored DMS message from the
system. Since a stored DMS message may be used in a plan, a check is made to see if the
message is used in a plan so that the user can be warned accordingly. The act of deleting
the stored message involves updating the database and pushing an event to notify others
that the message has been removed from its library.

X

Operator

GUI DMSMessagelibrary

StoredDMSMessage

PlanFactory

CosEvent.PushConsumer

Warn User

[deleteStoredDMSMessage=

e[plans using message]__i

[not authorized]
no rights

rgetPlansUsingMessage—=>

[* for each p

getPlansUsingObject

lan factory] 5

Plans using
the message

i [User wants to continue] |
removeMessage

[has right]

remove

updateDatabase

push

[message deleted]

Figure 15. DeleteDMSStoredMessage:Basic (Sequence Diagram)

R1B1 High Level Design

5-14

02/25/00

5.14 DeletePlan:Basic (Sequence Diagram)

A user with the proper functional rights may remove a plan from the system. Each item in
the plan is removed, followed by the removal of the plan itself. The Plan is withdrawn

from the CORBA trading service, and an event is pushed to notify others of the plan's
removal.

CosTrading: CosEvent
Plan Plan Item Reqister :PushConsumer
Operator
remove
____________ [not authorized]
no rights
[* for each item]
updateDatabase
[* for each item]
remove ><
[* for each item]
push (tem deleted)
updateDlatabase
withdraw
push
(Plan deleted)
Figure 16. DeletePlan:Basic (Sequence Diagram)
R1B1 High Level Design 5-15 02/25/00

5.15 DeleteRole:Basic (Sequence Diagram)

A user with the proper functional rights may delete a role from the system. The role cannot
be deleted unless there are no users currently assigned to the role. Note - roles are not
published items, thus no offer exists in the trading service and there is no need to push an

event.
@)
; _\ GUl User Manager
Administrator
deleteRole———>
isRoleAssigned
P [role assigned]
can't delete role
deleteRole——>
failure
[Not Authorized]
failure
[Invalid Role]
Update Database
Success

Figure 17. DeleteRole:Basic (Sequence Diagram)

R1B1 High Level Design 5-16 02/25/00

5.16 DeleteUser:Basic (Sequence Diagram)

A user with the proper functional rights may delete a user from the system. Before deleting
the user, a check is made to see if the user is logged into any of the operations centers that
exist in the system. A user cannot be deleted if currently logged in. If not logged in, the
user's information is deleted from the system.

@]
Admmimistrator GUI User Manager OperationsCenter
deleteUser————=>
[* for each Op Ctr]
isUserLoggedin
P [user logged in]_______;
failure
deleteUser—————=>

[not authorized]
f@ilure

[invalid user]
failure

Update Database

User Deleted

Figure 18. DeleteUser:Basic (Sequence Diagram)

R1B1 High Level Design 5-17 02/25/00

5.17 ForceLogout:Basic (Sequence Diagram)

A user with the proper functional rights may force another user in the system to be logged
out. The login session of the user to be logged out is obtained from the user's operation
center. The user's login session is used to force the user's GUI to logout.

@)
OperationsCenter UserLoginSession
Administrator
getLoginSessions—>}
A [not authorized] -
A Login Sessions -
forceLogout———>
forceLogout——>
S [not authorized]-----------
e [not authorized]---------

Figure 19. ForceLogout:Basic (Sequence Diagram)

R1B1 High Level Design 5-18 02/25/00

5.18 GrantRole:Basic (Sequence Diagram)

A user with the proper functional rights can grant a role (and thus a collection of functional

rights) to a user. The newly granted role is used in conjunction with other roles that are
already granted to the user (if any).

o

- User Manager
Administrator

grantRole

[not authorized]
failure

[Invalid Role]
failure

Update Database

Role Granted-——-—--

Figure 20. GrantRole:Basic (Sequence Diagram)

R1B1 High Level Design 5-19 02/25/00

5.19 Login:Basic (Sequence Diagram)

Prior to logging into the system, the GUI must create a UserLoginSession object that is
used by the OperationsCenter to monitor the application through which the user is using the
system. The OperationsCenter loginUser method is used to login to the system. If a valid
username and password are given, the OperationsCenter returns a token that is used by the
user's GUI to access priveleged operations within the system.

@)
Operations Center
Operator
create User Login Session
loginUser—————>*_
r!nva:!g :og!n] The user login session
Invalia login will be passed to loginUser

Figure 21. Login:Basic (Sequence Diagram)

R1B1 High Level Design 5-20 02/25/00

5.20 Logout:Basic (Sequence Diagram)

When a user logs out of the system, the operations center where the user was logged in
checks to see if the user is the last user remaining at the operations center. If the user is the
last user at the operations center, the operations center checks to make sure the operations
center is not controlling any shared resources in the system. If it is, the user is not allowed

SharedResourceManager

to log out.
(e}
i Operations Center User Login Session
Operator T
gELOpCéntEI
logoutUser
—setSessionLoggingOuh|

This will call the ping

method of each

UserLoginSession.

This is to ensure that -

the connection has not getNumLOﬂgedansers

been lost.

[num logged in > 1
delete
Success
hasControlledResources
I,
[has assigned]
setSessionLoqgingOut(false)
o [has assigned] i
failure
dC:ClC
Success: ><

[*for each shared resource mgr] N

Figure 22. Logout:Basic (Sequence Diagram)

Shared Resource

[* for each shared resource] N
getControllingOpCenter

R1B1 High Level Design

5-21

02/25/00

5.21 ModifyDMSStoredMessage:Basic (Sequence Diagram)

A user with the proper functional rights can edit a stored message. The proposed contents
for the stored message are checked against the dictionary prior to allowing the new content
to be set. The state of the beacons associated with the message are also checked to make
sure the beacons are not turned on for a message with no text. An event is pushed via the
CORBA Event Service to notify others of the change to the stored message's contents.

DMS Message Library Stored DMS Message Dictionary CosEvent.PushConsumer
Operator
getStoredMessages— >
seth geContent:

[not authoriied] ,,,

no rights
——checkForBannedWords—>
validateBeaconState
S — [invalid message content}------=---=rr-rororoeeaeecd
updateDatabase
push
[message changed]
S — Stored Message modifieg--------=--=-memrememeeeed

Beacons can only be
turned on if message
text is not blank.

Figure 23. ModifyDMSStoredMessage:Basic (Sequence Diagram)

R1B1 High Level Design

5-22

02/25/00

5.22 ModifyPlan:Basic (Sequence Diagram)

A user with the proper functional rights may modify the contents of a plan. Since the
concept of a plan is generic, the sequence diagram shows the modification of a plan that
contains DMSStoredMessageltems. The modification process involves obtaining a
reference to the item from the plan and invoking methods directly on the plan item. For a
DMSStoredMessageltem, this involves setting the stored message or the DMS associated
with the stored message. Event notification and database updates are handled by the plan

item.
% Plan DMSStoredMsgltem CosEvent:PushConsumer
Operator
getltems
.| Operator selects a
plan item to modify
setMessage
[not authorized]
no rights
updateDatabase
push
[DMSStoredMsgltem modified]
setDMS

[not authorized]
no rights

1
updateDatabase

push
(DMSStoredMsgltem modified)

R1B1 High Level Design 5-23 02/25/00

Figure 24. ModifyPlan:Basic (Sequence Diagram)

R1B1 High Level Design 5-24 02/25/00

5.23 ModifyRole:Basic (Sequence Diagram)

A user with the proper functional rights may modify the functional rights assigned to a role.

o

User Manager

Administrator

setRoleFunctionalRights——=

SR [not authorized]
failure

[invalid role]
failure

Update IlDatabase

Success

Figure 25. ModifyRole:Basic (Sequence Diagram)

R1B1 High Level Design 5-25 02/25/00

5.24 MonitorControlledResources:Basic (Sequence Diagram)

System Watchdog

There is a requirement that all shared resources that are in use have an operations center
responsible for them. The system enforces this rule as much as possible, however a
monitor is used to detect rare occasions that may occur, such as a power outage at an
operations center that is in control of one or more shared resources. The process of
monitoring shared resources is delegated to each shared resource manager that exists in the
system. Periodically, a shared resource manager checks each of its resources for controlling
operations centers. It uses a summary of the operations centers that are controlling its
resources and calls each operations center to check the number of logged in users at the
operations center. The operations center checks each user login session to make sure it is
still alive when it determines its count of logged in users. Should a shared resource
manager detect a resource under control of an operations center that has no logged in users,
the shared resource manager pushes an event to notify others.

% SharedResourceManager SharedResource OperationsCenter CosEvent.PushConsumer

—monitorControlledResources—>

. __[*for each shared resource] S
getControllingOpCenter

getNumLoggedinUsers————————>!

oo nuMLoggedinUsers -

[numLoggedinUsers < 1]
push

Push an alarm
indicating that
there is a resource
controlled by an
operations center
where nobody is
logged in.

Figure 26. MonitorControlledResources:Basic (Sequence Diagram)

R1B1 High Level Design 5-26 02/25/00

5.25 PolIDMS:Basic (Sequence Diagram)

A user with the proper functional rights can poll a DMS for its current status outside of the
normal polling cycle. Since this will require field communications which may be time
consuming, the command is executed asynchrounously by the DMS and a command status
object is used to keep the caller apprised of the execution status. An event is pushed via the

CORBA Event Service to notify the caller and others of the new DMS status following the
poll attempt.

o
; : bus CommandQueue EMS CosEvent.PushConsumer
Operator
create CommandStatus
pollNow
isOffline
. offline]
[offline] completed
isOffline i
. . [not authorized for function]
..ot authorized for function]..... completed
n
create PollIDMSNowCommand
addCommand
< commandQueued
Other previously
queued commands
execute here, itmay [
take a long time
before execution of execute
this command begins.
isOffline: | [offline]
completed
forcedPoll
forcedPoll may take B
several seconds
(e forcedPoll response-----------------4
push,
DMS status
done r—completed—> [1
execution
delete7><
delete

Figure 27. PolIDMS:Basic (Sequence Diagram)

R1B1 High Level Design 5-27 02/25/00

5.26 RemoveBannedWord:Basic (Sequence Diagram)

A user with the proper functional rights may remove banned words from the dictionary
used to validate messages destined for a DMS. An event is pushed following the update of
the dictionary to notify those that may have the dictionary in a local cache.

@)
Dictionary CosEvent.PushConsumer
Operator
—removeBannedW ordList—=>

[not authorized]
no rights

words removed

removeWordsFromDatabase

push
(removed banned words)

Figure 28. RemoveBannedWord:Basic (Sequence Diagram)

R1B1 High Level Design

5-28 02/25/00

5.27 ResetDMS:Basic (Sequence Diagram)

A user with the proper functional rights may reset a DMS controller. Since this operation
involves field communications, the operation is carried out asynchronously by the DMS
and a command status object is used by the caller to be kept apprised of the progress of the
operation. The DMS is blanked prior to the reset to insure all DMSs that are reset are put
into a consistent state. All rules governing shared resources apply to a reset operation,
which involves checking the controlling operations center of the device against the
operations center of the user prior to allowing the operation to be performed.

R1B1 High Level Design 5-29 02/25/00

o

;: DMS CommandQueue EMS PushConsumer
Operator
create CommandStatus
resetController
E——
isOffline
) [offline]
ol
not authorized }for function
| __[not auth%r[i)z Relcgi rz[t)sr function].... . completed !

Preliminary 80-20 rule
check. Itis not valid if
there are other commands
in the queue that could
alter the controlling op ctr

-1
/i canModiy

- [can't modify]
fcanfggigﬁ?s'fy] comple letfiy
create ResetDMSCommand
S commandQueued-—1 addCommand

Other previously
queued commands
execute here, it may
take a long time
before execution of

this command begins. L execute—>)
isOffline [offline]
" completed
canModify “1_[eant modify] s
completed
Need to check ’ blankSign
the functional g g ﬁ
rights again here blankSign may take
in case a several seconds.
previously queued Any beacons must
command changed v be turned off.
the controlling op ’
center / blankSign response
This may not be necessary [failure]
(depending on the model), completed
S0 we may store whether .
the DMS requires it during update (blanked sigri
server initialization. push (blanked sign)

clearControllingOpCente

[controlling op ctr cleared]
push (changed controlling op ctr)

resetController———— >

The resetController DT

command may take
several seconds.

o resetController response ===
done i——completed
execution
del
aeiete

X

delete

Figure 29. ResetDMS:Basic (Sequence Diagram)

R1B1 High Level Design 5-30 02/25/00

5.28 RevokeRole:Basic (Sequence Diagram)

A user with the proper functional rights may revoke a role from another user. This
modifies the functional rights of the user and takes effect upon the next time the user logs
into the system.

(@)
- User Manager
Administrator

revokeRole— >
P [not authorized]

failure
___________________ [invalidrole]

< failure

Update Database

SR Role revoked---------------=-1

Figure 30. RevokeRole:Basic (Sequence Diagram)

R1B1 High Level Design 5-31 02/25/00

5.29 SetDMSLibraryName:Basic (Sequence Diagram)

A user with the proper functional rights may set the name assigned to a DMS stored

message library. An event is pushed via the CORBA Event Service to notify others of the

name

o

Operator

CosEvent:PushConsumer

change.
DMSMessageLibrary
setName———>
[not authorized] |
no rights
updateDatabase
push

Library name set------

Figure 31. SetDMSL.ibraryName:Basic (Sequence Diagram)

[library name changed]

R1B1 High Level Design 5-32

02/25/00

5.30 SetDMSMessage:Basic (Sequence Diagram)

A user possessing the proper functional rights may set the display (including beacons) of a
DMS. DMS objects that are offline cannot be communicated with. Setting the message on
a DMS involves the concept of shared resource management, allowing only the controlling
operations center to set the message on a DMS that is not blank (unless the user has the
override functional right). Once clear to perform the operation, the command is queued
within the DMS object and the user is notified that a long running operation is in progress.
The supplied CommandStatus object is used to notify the caller of the ongoing progress.
When the DMS pulls the command off its internal queue, it executes the command using
the FMS subsystem. If the command is successful, the controlling operations center is set .
The CORBA event service is used to push state changes of the DMS, for both the action of
the message being set on the sign and the controlling operations center being set.

R1B1 High Level Design 5-33 02/25/00

; : DMS CommandQueue
Operator EMS

creat /—‘ CommandStatus

—
isOffline

PushConsumer

‘ Dictionary ‘

[offlinel [offline]
isOO fjfrl}ﬁe completed
[not authorized for function <
. [not authorized for function] ___ completed
noRights
checkForBannedWords
[banned words]
[banned words]
bannedWords completed
Preliminary 80-20 rule
check. Itis not valid if i i
there are other commands |~ canModify
in the queue that could
alter the controlling op ctr
[can't modify]
[can't modify] completed
noRights
create “| SetDMSMessageCommand
S commandQueued-—— addCommand >
Other previously ——execute—>
queued commands
execute here, it may
take a long time
before execution of
this command begins.
isOffline [offline].
" completed
canModify [can't modify]
completed

setMessage
may take
several seconds ...

Need to check

the functional
rights again here
incase a
previously queued
command changed
the controlling op
center

ge response

[success’
push (set message)

[success];
setControllingOpCenter

[controlling op ctr changed]
push (changed controlling op ctr)

completed

execution
——delete——>!

X

del
delete-

X

Figure 32. SetDMSMessage:Basic (Sequence Diagram)

R1B1 High Level Design 5-34 02/25/00

5.31 SetDMSName:Basic (Sequence Diagram)

A user with the proper functional rights can change the name of a DMS. An event is
pushed via the CORBA Event Service to notify others of the name change.

X

Administrator

I [not authorized]

CosEvent.PushConsumer

setName—————>

noRights

updateDatabase

push

[name changed]

R1B1 High Level Design

5-35

02/25/00

Figure 33. SetDMSName:Basic (Sequence Diagram)

R1B1 High Level Design 5-36 02/25/00

5.32 SetDMSOffline:Basic (Sequence Diagram)

A user with the proper functional rights can set a DMS offline if the DMS is blank or failed.
Taking a DMS offline involves FMS communications and may take an extended amount of
time. For this reason, the operation is executed asynchronously and a command status
object is used to keep the caller informed of the execution status. An attempt is made to
blank the DMS before taking it offline. Taking the DMS offline has the effect of stopping
automatic polling and disallows any further operations other than to put the DMS online.
Shared resource management rules apply to this operation. If the DMS is under the control
of an operations center, only a user from that operations center or a user with override
functional rights may take the DMS offline. Taking the DMS offline clears the controlling
operations center.

R1B1 High Level Design 5-37 02/25/00

o
i DMS CommandQueue EMS PushConsumer

Operator
create CommandStatus

———takeOffine————> L
E——
i isOffline

i [offline]
i[s%ﬂflflﬁﬁ]e completed
[not authorized for function]——————1"%" authggrzne?ef‘zrd function]
< noRights pl

1
Preliminary 80-20 rule canModify
check. Itis not valid if <
there are other commands
in the queue that could
alter the controlling op ctr

[can't modify]
noRights TakeDMSOfflineCommand
create >

addCommand

[can't modify]
completed

< commandQueued-{

Other previously
queued commands
execute here, it may
take a long time
before execution of

this command begins. execute
isOffline [isOffiine]
| completed
isBlank
[not blank]
getOperationalStatus
i [not blank or failed]9
completed
canModify ~1__[can't modify]
completed

Need to check blankSign—
the functional

rights again here
incase a
previously queued
command changed
the controlling op
center

blankSign may
take several
seconds. It must
also clear any
beacons

blankSign response

[success]
push (blanked sign)
clearControllingOpCenter——————
[controlling op ctr changed]
push (changed controlling op ctr)
[success] stopPolling:
setOfflineFlag (true) [success]
push (DMS offline)
——completed——>
done
execution
delete——>
delete:

Figure 34. SetDMSOffline:Basic (Sequence Diagram)

R1B1 High Level Design 5-38 02/25/00

5.33 SetDMSOnline:Basic (Sequence Diagram)

A user with the proper functional rights may put a DMS online. Putting the DMS online
involves FMS communications and is therefore done asynchronously. A command status
object is used by the caller to monitor the status of the operation. Before a DMS is brought
online, it is blanked to insure its status is consistent with the status known by the system.
Automatic polling of the DMS is started within the FMS subsystem.

R1B1 High Level Design 5-39 02/25/00

E DMS CommandQueue EMS PushConsumer

Operator

create CommandStatus
putOnline:
o
isOffline
. [not offline]
[not offline] completed
isOnline :
.) t authorized for functi
... [not authorized for function].__ [not au gg,.zr]%|et%r(j unetion
noRights
R PutDMSOnlineCommand
addCommand——>
S commandQueued-------

Other previously

queued commands

execute here, it may

take a long time

before execution of

this command begins.

——execute—>}
isOffine { _[not offline]
completed
blankSign:
blankSign may
take several
seconds. It must
also clear any
beacons
blankSign response------=--=-=----3
[success]
push (blanked sign)
startPolling——————————— > -
[success] ho b T n Assum ption:
setOfflineFlag (false) [success] | startPolling
push (set online) :nzygt?grrr?gtgut%
o done____ i completed communicate
execution with the sign.
delete
delete

Figure 35. SetDMSOnline:Basic (Sequence Diagram)

R1B1 High Level Design 5-40 02/25/00

5.34 SetDMSPollinginterval:Basic (Sequence Diagram)

A user with the proper functional rights can set the polling interval used by the FMS
subsystem to monitor the DMS. Since FMS communications are required, the operation is
performed asynchronously and a command status is used by the caller to monitor the
progress of the command.

X

o DMS CommandQueue
perator
create CommandStatus
setPollinterval
[not authorized for function]
completed
— [not authorized for function]___.____]
noRights
create SetDMSPollingintervalCommand
SE— commandQueued-------------- addCommand———>
Other previously
queued commands
execute here, it may execute
take a long time setPoIIIn;tervalé
before execution of i
this command begins Comms with FMS
may take several
seconds.
done —completed—>
execution
delete
delete—

X

Figure 36. SetDMSPollingInterval:Basic (Sequence Diagram)

R1B1 High Leve

| Design

5-41

02/25/00

5.35 TransferResponsibility:Basic (Sequence Diagram)

A user with the proper functional rights can move the control of a shared resource from one
operations center to another. The target operations center must have users logged in to be
able to be used as the target of this operation. The change to the shared resource's

controlling operations center is pushed as an event via the CORBA Event Service to notify
others of the change.

o
i Operations Center Shared Resource SharedResourceManager UserLoginSession | | CosEvent.PushConsumer
Operator

getOpCenter

* for each shared resource manager]
getControlledResources(op ctr)

getControlledResources———————>}

—>
[* for each operations center]
getNumLoggedinUsers

failed
[no rights]

User selects a target op center l%

[has logged in users]
[*for each selected resource}
transferSharedResource —setControllingOpCenter—=>}

push
controlling op ctr changed)

Figure 37. TransferResponsibility:Basic (Sequence Diagram)

R1B1 High Level Design 5-42 02/25/00

5.36 ViewDMSStatus:Basic (Sequence Diagram)

This sequence diagram depicts the fact that the status of a DMS may be obtained on
demand, or can be received periodically as the state of the DMS changes. State changes are
pushed as events via the CORBA Event Service.

T DMS CosTrading.Lookup
Operator

query References to all DMS objects
in the system are obtained from

DMS List the CORBA trading service.
Initial status of a DMS is obtained
by calling the DMS methods at startup.

getStatus

changes by pushing events through
the CORBA event service. DMS

DMS notifies operator of DMS status Iﬁ

reat
- o CosEvent.PushConsumer

push(status change)

Figure 38. ViewDMSStatus:Basic (Sequence Diagram)

R1B1 High Level Design 5-43 02/25/00

6 — Packaging

Packaging is a way of breaking up a large system into more manageable pieces. Each package

has a well-defined set of interfaces.

Changes may occur within the internals of a package

without affecting the rest of the system. Changes to an interface to a package may require

changes to other packages, as shown with dependencies.

packaging of the Chart Il Release 1 Build 1 system.

Dependencies on Common
are not shown since this
package is common to all.

o CommandStatus

Common

Plan Service
Application

I

Plan PlanFactory

Plantem
—ov
Plan Management ES—

 DMSFactory
DMSLibraryFactory

DMSWessageLibrary]
—o .
CommEnabled Device Management

StoredDMSMessage
[o]

DMSSloredl\/IsgllemO DMS Control ‘

The diagram below shows the

DMS Service
Application
User Management
Service Application
o UserManager % Dictionary

User Management

o OperationsCenter N
/o SharedResource)

Dictionary Package
A

SharedResourceManager

—oO
Resource Management

UserLoginSession Organization

GUI
Application

Figure 39. R1B1PackageDiagram (Class Diagram)

Future may require Dictionary
to be served from own service,

Dictionary to be served from
DMS Service for this release.
particularly if used for DMS and HAR.

R1B1 High Level Design

6-1

02/25/00

This deployment diagram shows which applications will serve each of the CORBA interfaces in
the system. Dependencies are used to show where applications require another application for
full functionality. Since the nature of the Chart Il system is that partial functionality will be
available even in the event of a system failure, a note on each dependency discusses why the
dependency exists and the functionality that is dependent upon it. Note that lines showing
dependencies on the CORBA services are not shown explicitly. A note attached to each of these
services describes the dependencies in detail.

The dependencies shown on the diagram indicate services that
are required for another service to be fully functional. Partial
functionality is available as described in the notes associated
with the dependencies.

This diagram shows the partitioning of objects into applications. T

UserManagementService

DMSService ‘

* OperationsCenter

Required for DMSFactory

to detect resources under
, age the control of an Op center Organization
that has no logged in users.

DMSStoredMessageltem ‘

UserManage

il

Required for GUI to

login to system, list e Aways optional. Op Center

logged in users, manage uses the presence of the

users. UserlLoginSession in determining
the number of users logged in.

Required for plan containing L\
DMSStoredMessageltems to
beactivated. e

Required for GUI to perform
DMS control, library management,
and dictionary maragement
PlanService
N Gul
PlanFactory
UserLoginSession

m
Required for GUI to manage
and execute plans.

CORBA Event Service
All applications except the
Trading Service have a
i dependency on the Event Service.

CommandStatus

—B CORBA Trading Service
All applications except the

Event Service have a

dependency on the Trading

Service. The GUI needs it

for initial object discovery at

startup, and the services need

it whenever a request is made

to create a new published object
(such as adding a DMS to the system)

——————————— The event service is needed by

the Services to push state changes,
while it is needed by the GUI to
receive state changes.

Figure 40. R1B1DeploymentDiagram (Deployment Diagram)

R1B1 High Level Design 6-2 02/25/00

7 - Deployment

This deployment diagram shows where each of the Chart Il executables will be run for
Release 1 Build 1. In addition to the Chart Il applications, the existing AVCM applications
are shown to emphasize the coexistence of these two applications.

Hanover

SOC AVCM FMS CHART Il Server

U Ut Ut

DMS Service % Plan Service
EMS Manager User Management
Service
AVCM Manager % Oracle Database Server
CORBA CORBA
Event Service Trading Service

LAN

4
\

<
b
z\

TOC3 WS1

C— AVCMGUI

% CHART I GUI

TOC4WS1

C— AVCMGUI

% CHART I GUI

AOC WS1

— AVCMGU

% CHART Il GUI

Figure 41. R1b1 (Deployment Diagram)

SOC WS1

= aveMoul
% CHART I GUI

LAN—_

SOC WS2

C— AVCMGUI
% CHART Il GUI

R1B1 High Level Design

02/25/00

8 — Interface Definition Language (IDL)

This section lists the IDL that is defined for the CORBA objects for release 1 build 1. The IDL
is laden with comments that are able to be parsed by an automatic document generator. The
generated documentation is available in the IDL directory accompanying this paper. This online
format may be more desirable for review, however the hardcopy is contained here.

/*
Fil e Name : Conmon. i dl
Prepared By : Conputer Sciences Corporation / PB Farradyne, |nc.

R + Copyright 1999, Maryland Departnent of Transportation
| NMDOT | Al Rights Reserved

This file is property of the Maryl and Departnent of
Transportation. Any unauthorized use or duplication of this
file, or renoval of the header, constitutes theft of

intell ectual property.

Description : This file contains contains definitions needed by
multiple modules in the CHART 2 project.

H story
Dat e Aut hor Description

*/

#i fndef _COVMON I DL_
#define _COVMON | DL _

#pragma prefix " CHART2"

/**

* This nmodul e contains definitions needed by nultiple nodul es.
*/

nodul e Conmon

{

* %

An access token is an internally generated byte sequence

whi ch contains at |least all of the permissions given to

the user. The token is generated by the call to Logi nUser ()
and nust be passed to all nethods which are restricted.
Restricted nethods include those which could negatively

i npact the operation of the system as well as those which
* return sensitive information.

*/

t ypedef sequence<octet> AccessToken

E I T .

R1B1 High Level Design 8-1 02/25/00

/**

* User nanme of a CHART2 user

* Typedef is used to protect the IDL from future changes.
*/

typedef string User Nane;

/**

* Password of a CHART2 user.

* Typedef is used to protect the IDL from future changes.
*/

typedef string Password;

/**

* A network connection site is the site on the network where an object is
bei ng served.

* Typically this will be the nane of the district whose server is running
a service

*/

typedef string NetworkConnectionSite;

/**
* CGeneric exception class for the CHART2 system
*
* This class can be used for throwi ng very generic exceptions
* which require no special processing by the client. |s supports
* a reason string which may be shown to any user and a debug string
* which will contain detailed infornation useful in deternining the
* cause of the problem
*
* @renber reason - High level error description
* @renber debug - Detailed information to help resolve the problem
*/
excepti on CHART2Excepti on
{
string reason
string debug;
1
/**

* Exception which describes an access denied, or "no rights" failure.
*

* @renber reason - the explanation for the failure.

*

eiception AccessDeni ed

{ string reason

. string requiredRi ghts;

R1B1 High Level Design 8-2 02/25/00

s

~
E I T R R

~

*

Internal identifier type for all public objects.

Conposed of the follow ng el ements

- 4 byte sequence id which nust be unique only within this second
- 4 byte time object was created in seconds from epoch

- 2 byte port of service where object is originally served

- 4 byte ip_address of service where object is originally served

t ypedef sequence<octet> Identifier

/**

*
*
*
*
*
*
*
*
*
*
*

/

Interface for client updates on [ong running operations.

This interface is used to allowthe initiating client to

track the status of an operation which is |ong running and

t hus, performed asynchronously by a server. The client nay create
a conmand status object and pass it to the operation. The server
wi Il then invoke the update and conpleted nethods to notify the
client of significant events. Refer to the definition of the
specific long running operation to determine if the ConmandSt at us
obj ect is optional

i nterface CommandSt at us

{

s

/**

Met hod to update the current status of the command.

*

*

* This nmethod nay be called repeatedly by the server to notify
* the client of the current status of a comand.
*
*
*

@aram status - Description of the current status.
/
voi d update(in string status);

/**

Met hod to notify the client that the command has conpl et ed.

This method may be called only once by the server to notify the
client that the command has conpl eted, and send final status
information. After this method is invoked, the client is free to
di spose of this object.

@ar am commandSuccessful - Indicates if the command conpl eted
successful ly or not.
@aram final Status - Description of the final comuand status.

L T T T S B

~

voi d conpl eted(in bool ean comandSuccessful, in string final Status)

/1 end interface ConmmandSt at us

#endi f

/*

R1B1 High Level Design 8-3

02/25/00

Fil e Nane . Devi ceManagenent . idl

Prepared by . Conputer Sciences Corporation / PB Farradyne, I|nc.
+o-m o - + Copyri ght 1999, Maryland Departnment of Transportation

| MDOT | Al'l Rights Reserved

Fommm o - Fom e a o

This file is property of the Maryl and Departnment of
Transportation. Any unauthorized use or duplication of this
file, or renmoval of the header, constitutes theft of

intell ectual property.

Description : This file contains the IDL definitions that could
possi bly apply to nore than one type of device.

Hi story
Dat e Aut hor Description

#i fndef _DEVI CE_MANAGEMENT | DL_
#define _DEVI CE_MANAGEMENT | DL_

#i ncl ude <Conmon. i dl >

#pragma prefix " CHART2"

/**

* This nmodul e contains the definitions of the IDL interfaces
* that may be common to nore than one type of device.

*/

nodul e Devi ceManagenent

{

/**

* This enumlists the values that can be used to describe the operationa

status of a
* CHART2 system devi ce.

*

* @rember K The DMS is working properly.

* @renber COWM FAI LURE There has been a failure conmunicating to the

DIVS.

* @renber HARDWARE FAILURE The DMB is reporting a hardware failure.

*
*/
enum QOper at i onal St at us
{
X,
COW_FAI LURE,
HARDWARE_FAI LURE

}s

/**

R1B1 High Level Design 8-4

02/25/00

* Event information for a controlling op center change.
*
* @renber resourcel D ID of the resource for which the controlling
operations center has been changed.
* @renber opCtrNanme Nane of the new operations center
* @renmber opCtrName | D of the new operations center
*/
struct ControllingOpCtrChangeEvent|nfo
{
Common: : I dentifier resourcelD
string opCt r Nane;
Conmmon: : I dentifier opCrlD;

}s

/**

* Interface which is common to all hardware that can be communi cated wth.
* When offline, no communication will occur with the hardware.

* When online, the systemmay attenpt to conmunicate with the hardware.
*/

i nterface ConmEnabl ed

{

/**

* Puts the hardware online so that it can be communicated with.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation.

@xception Conmon: : AccessDeni ed Call er does not have proper rights
to performthis operation
* @xception Conmon: : CHART2Excepti on A general error occurred while
attenpting the
*

* F X

comand.
*/
voi d putOnline(in Conmon:: AccessToken token)
rai ses (Conmon: : AccessDeni ed, Common:: CHART2Excepti on);

/**

* Takes the hardware offline so that it cannot be conmuni cated wth.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation.

@xception Conmon: : AccessDeni ed Call er does not have proper rights
to performthis operation
* @xception Common: : CHART2Excepti on A general error occurred while
attenpting the conmand.
*/
voi d takeO fline(in Conmon:: AccessToken token)
rai ses (Conmon: : AccessDeni ed, Common:: CHART2Excepti on);

* F X

/**

* Determ nes whether the hardware is offline or online.

R1B1 High Level Design 8-5 02/25/00

*

* @eturn True if the hardware is offline, false if it's online.
*/
bool ean i sOfline();

H
}; // end nodul e Devi ceManagenent
#endi f
/*
Fil e Name : Dictionary.idl

Prepared By : Conputer Sciences Corporation / PB Farradyne, |nc.

+o-mmm - + Copyri ght 1999, Maryland Departnment of Transportation
| NMDOT | Al Rights Reserved

This file is property of the Maryl and Departnent of
Transportation. Any unauthorized use or duplication of this
file, or renmoval of the header, constitutes theft of

intell ectual property.

Description : This file contains interface definition | anguage desri bi ng
the nodul e containing Dictionary related definitions for
the CHART 2 project.

H story
Dat e Aut hor Description

*/

#i fndef _CHART2_DI CTI ONARY_| DL_
#define _CHART2_DI CTI ONARY | DL_

#pragma prefix " CHART2"

#i ncl ude <Conmon. i dl >

/**

* This nodul e contains interfaces needed for the CHART2 system dictionary.
*/

nodul e Di ctionary

{

/**

* Alist of words

*/

t ypedef sequence<string> WordLi st;

R1B1 High Level Design 8-6 02/25/00

/**

This enumlists the events related to dictionary. These events are
pushed by the Dictionary service through an untyped channe

of a CORBA event service. The data pushed with these events is
defined in the DictionaryEvent union

* F Xk

* @renber BannedWor dsAdded pushed when banned words are added to the
di ctionary.

* @renber BannedWr dsRenoved pushed when banned words are renoved from
the dictionary.

* @ee DictionaryEvent

*/

enum Di cti onaryEvent Type

BannedWor dsAdded,
BannedWor dsRenpved

s
/**

* Data that is passed with every banned word event.

*

* @renber dictionarylD - ID of the dictionary that has been altered.
* @renber string theWord - List of words related to the event.

*/

struct BannedWr dEvent Dat a

{
Conmon: : I dentifier di ctionaryl D,
Wor dLi st i stOf Words;
1
/**

* This union identifies the data to be passed with events that are pushed
* through the CORBA event service.
*
* @ee DictionaryEvent Type
*/
uni on DictionaryEvent switch(Di ctionaryEvent Type)
{

case BannedWr dsAdded:

case BannedWr dsRenoved:

BannedWbr dEvent Dat a event Dat a;

s

/**

Interface for management and utilization of a systemdictionary.

*

* This interface provides nmethods to nodify the contents of the

* CHART2 systemdictionary. It also provides a nethod to check

* a delimted string for banned words. The Dictionary is a list

* of banned words agai nst which all traveller information nessages
* must be checked before being exposed to the public.

* (e.g. DVB nessages before being sent to a sign)

R1B1 High Level Design 8-7 02/25/00

*/
interface Dictionary

{

/**

* Get the unique identifier for this dictionary.

*

* @eturn - The dictionary identifier.
*/
Common: : ldentifier getlX);

/**

* Get the current list of banned words.

*

* This nmethod will return the Iist of banned words currently
* stored in the dictionary database. |If there are no words in
* the dictionary, this nmethod will return an enpty sequence.
*

* @aramtoken - The access token of the invoking client.

*

* @eturn - The current |ist of banned words.

*

*

@xception Conmon: : AccessDeni ed - Thrown when the invoking client
does not have
* the proper functional rights to
call this
* nmet hod.
* @xception Comon:: CHART2Excepti on - Thrown when a general error
condi tion
* keeps this nethod from
conpl eting
* successful ly.
*/
Wor dLi st get BannedWr ds(in Conmon: : AccessToken token)
rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

Removes a list of banned words fromthe dictionary.

This method will renove the specified words fromthe current

list of banned words in the dictionary. This nethod will

not conplain if any of the specified words are not in the dictionary.
Because the desired end-state is achieved. The words are not in

the dictionary.

@aram token - The access token of the invoking client.
@ar am bannedWr dLi st - The words to renove fromthe dictionary.

@xception Conmon: : AccessDeni ed - Thrown when the invoking
client does not have the
proper functional rights to
call this nethod.

@xception Conmon: : CHART2Exception - Thrown when a general error

condi tion

¥ 0% 3k Sk Sk Xk 3k kX X X X Xk

R1B1 High Level Design 8-8 02/25/00

* keeps this nethod from
conpl eti ng
* successful ly.
*/
voi d renoveBannedWor dLi st (i n Comon: : AccessToken token, in WordLi st
bannedWor ds)
rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* Adds a |list of banned words to the dictionary.

*

* This method will add the specified list of words to the current
* |list of banned words in the dictionary. This nethod will

* not conplain if any of the specified words were already in the
* dictionary. Because the desired end-state is achieved. The word
* is in the dictionary.

*

* @aramtoken - The access token of the invoking client.

* @aram bannedWords - The |ist of words to add to the dictionary.
*

* @xception Comon: : AccessDenied - Thrown when the invoking

* client does not have the

* proper functional rights to

* call this nethod.

*

@xception Conmon: : CHART2Exception - Thrown when a general error
condi tion

* keeps this method from
conpl eti ng

* successful ly.

*/

voi d addBannedWbr dLi st (i n Common: : AccessToken t oken, in WrdLi st
bannedWr ds)
rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* Checks a set of words for banned words.

*

* This nmethod will check the passed string for banned words. The
string

* will be deconposed into words by using each character in the
delimters

* paraneter as a delimter to mark word breaks. The nethod will return

* an enpty list if no banned words are found. Qherwise, it wll
return
a list containing all banned words in the nmessage.

@ar am nessageToCheck - The nessage to check for banned words.
@aramdelinmters - The set of characters to treat as delimters.

E o T A

@xception Conmon: : CHART2Exception - Thrown when a general error
condi tion

* keeps this nmethod from
conpl eti ng

R1B1 High Level Design 8-9 02/25/00

* successful ly.
*/
Wor dLi st checkFor BannedWords(in string messageToCheck, in string
del i neters)
rai ses(Common: : CHART2Excepti on);
1

Hs
#endi f

/*
Fil e Name . DMsControl .idl
Prepared By : Conputer Sciences Corporation / PB Farradyne, |nc.

R + Copyright 1999, Maryland Departnent of Transportation
| NMDOT | Al Rights Reserved

This file is property of the Maryl and Departnent of
Transportation. Any unauthorized use or duplication of this
file, or renmoval of the header, constitutes theft of

intell ectual property.

Description : This file contains interface definition | anguage desri bi ng
t he nodul e containing DMS control related definitions for
the CHART 2 project.

Hi story
Dat e Aut hor Description

*/

#i fndef DWVMS | DL_
#define DMS |IDL_

#i ncl ude <Conmon. i dl >

#i ncl ude <Devi ceManagenent.idl >
#i ncl ude <Pl anManagenent.idl >

#i ncl ude <ResourceManagenent.idl >
#i nclude <Dictionary.idl>

#pragma prefix "CHART2"

/**

* This nodul e contains definitions relating to the control of dynanic nessage
si gns (DWVB)

*/

nodul e DVMSCont r ol

R1B1 High Level Design 8-10 02/25/00

interface
interface
interface
interface

/**

* A MULTI
energi ng

* NTCI P standard used for formatting nessages for display on a DWVS.

DMS requires

* the nessage text

*/

DIVS;

St or edDVSMessage;
DVSSt or edMessagel t em
DVSMessageli brary;

string is a string that uses a mark-up | anguage specified in the
The

passed to it to be formatted using this standard.

typedef string MITIString;

/**

* This enumlists the events related to DVMS control

that are pushed on a

DMS event

* channel through the CORBA event service. The data pushed with these
events is

* defined in the DMSEvent union

* @renber DMSAdded pushed when a DVS is added to the
system

* @renber DMSDel et ed pushed when a DM5S is renoved from
t he system

* @renber DVBOnli ne pushed when a DVS is put online.

* @renber DVMBOFfline pushed when a DM5S is taken offline.

* @renber ControllingOpCtrChanged pushed when the op center in control
of a DM5 is changed.

* @renber DMSLI brar yAdded pushed when a library has been added
to the system

* @renber DMBLI braryDel et ed pushed when a libarary has been
renoved fromthe system

* @renber DMSSt or edMessageAdded pushed when a stored nessage has
been added to a library.

* @renber DMSSt or edMessageChanged pushed when the contents of a stored
nmessage have been changed.

* @renber DMSSt or edMessageDel et ed pushed when a stored nessage has
been del eted fromthe system

* @renber DMSSt or edMessagel t emAdded pushed when a plan itemused to set
a DM5 Message has been added to a plan.

* @renber DMSSt or edMessagel t enChanged pushed when a DMS plan item has been
changed.

* @renber DMSBI anked pushed when a DM5S has been bl anked.

* @renber DMSMessageChanged pushed when the nmessage on a DMS has
been set or changed.

* @renber Current DVBSt at us pushed when there is a status change
for the DMS (or a forced poll was done).

* @renber DMSNanmeChanged pushed when the nane of a DM5 is
changed.

* @ee DMBEvent
R1B1 High Level Design 8-11 02/25/00

*/

enum DVSEvent Type

{
DVSAdded,
D\VSDel et ed,
DVSOnl i ne,
DMSOF f I i ne,
Control I i ngOpCt r Changed,
DVSLi br ar yAdded,
DVSLIi br ar yDel et ed,
DVSSt or edMessageAdded,
DVSSt or edMessageChanged,
DVSSt or edMessageDel et ed,
DVSSt or edMessagel t emAdded,
DVSSt or edMessagel t entChanged,
DVSBI anked,
DMSMessageChanged,
Cur r ent DMSSt at us,
DVSNaneChanged

s

/**

* This enum provides the valid values for the sign type of a DM5. The
sign type

* defines how characters may be displayed on the sign. Currently, only
char act er

* matrix signs are supported.

* @renmber CHAR MATRI X sign nodul es display 1 char each with physica
i ntercharacter

* spacing. This allows the full width of a nodule to
be used by

* a character.
*/
enum Si gnType

CHAR MATRI X
b

/**

* This struct defines the content of nessages to be placed on DMSs. The
text and beacon state

* are coupled and cannot be set independently. This struct represents a
subset of the NTCIP

* dnsMessageEntry specification

*

* @renber dnsMessageMulti String The text of the nessage formatted using
the NTCIP MULTI mark up | anguage.

* @renber dnsMessageBeacon 0 = Beacons OFF, 1 = Beacons ON

*/

struct MessageCont ent

{
MULTI String dnmsMessageMulti String;

R1B1 High Level Design 8-12 02/25/00

oct et dnsMessageBeacon

}s

/**

* This struct defines the content of nessages stored in a

DVMSMessageli brary.
* The text and beacon state are coupled and cannot be set independently.
*

@renber nmessageText The text of the nessage.

@renber messageTextlsMulti Indicates if the text in this stored
nmessage is already formatted into the MILTI
mar k- up | anguage or needs the systemto
format the nessage using the MD SHA
al gorithm

@renber beaconsOn True = Beacons ON, Fal se = Beacons OFF

/

* %k kX X % F

struct StoredMessageCont ent

{
string nmessageText ;
bool ean messageText | sMul ti;
bool ean beaconsOn;

1

/**

* This struct defines the data included in the status of a DMS

*

* @renber onLine Set to true if the DMB is currently on-line.

* @renber nsgContent text being shown on the sign (including MILTI
formatti ng tags) and the beacon state.

* @renber opStatus The operational status of the sign

* @renber statusChangeTine Date and tinme status of the DVS | ast changed
(seconds since epoch).

*/
struct Status
{
bool ean onLi ne;
MessageCont ent nmsgCont ent ;
Devi ceManagenent : : Oper ati onal St at us opSt at us;
unsi gned | ong st at usChangeTi ne;
1
/**

* This struct defines the data passed in the DVMSStoredMessageChanged event
*
* @renber storedMsgl D ID of the stored nmessage that was changed.
* @renber nsgContent Content of the nessage, including the text and beacon
st at us.
*/
struct DMSSt or edMessageEvent | nfo
{
Conmon: : I dentifier st or edMsgl D
St or edMessageCont ent nsgCont ent ;

R1B1 High Level Design 8-13 02/25/00

s

/**

* This struct defines the data passed with a DVSStatus event.
*

* @renber dnsl D I D of the DMVMS

* @enber status Status of the DMS.

* [
struct DMSSt at usEvent | nfo
{
Common: : ldentifier dnslD;
St at us st at us;
s
/**

* This struct defines data passed with a DVSNaneChanged event.
* @renber dnslD ID of the DVS whose nane was changed.
* @renber name New name given to the DWVS.

*/
struct DMSNameChangedEvent I nfo
{
Conmon: : Il dentifier dnslD;
string nane;
s
/**

* This struct defines data passed with a DVBMessageChanged event.
*
* @renber dnsl D DMS whose nmessage was set or changed.
* @renber nsgContent Text being displayed on the DVMS and the state of the
DVS beacons.
*/
struct DMBMessageChangedEvent | nfo
{
Common: : I dentifier dmsl D
MessageCont ent nmsgCont ent ;

s

/**

* This struct defines the data passed with a DWVSSt or edMsgl t entChanged

event .
*

* @enber item D ID of the plan itemthat was changed.

* @renber nanme Nanme of the plan item

* @renber dnslD ID of the DVMS that the plan item operates on.

* @renber nsgContent Content of the stored nessage to be placed on the
DIVS.

*/

struct DMSSt oredMessagel tenEvent I nfo

{

R1B1 High Level Design 8-14 02/25/00

s

Common: : I dentifier item D
string nane;
Comon: : I denti fi er dnsl D,

St or edMessageCont ent nsgCont ent ;

/**

*

This union identifies the data to be passed with events that are pushed

t hr ough t he

*
*
*

*/

event service.

@ee DMSEvent Type

uni on DVBEvent switch (DVSEvent Type)

{

case Control I i ngOpCtr Changed:
Devi ceManagenent : : Control | i ngOpCt r ChangeEvent I nfo opCtr i nf o;
case DMBMessageChanged:
DVMSMessageChangedEvent | nf o nsgChangedI nf o;
case DMSAdded:
DVS dns;
case DVBOnli ne:
case DMBO fl i ne:
case DMBSBI anked:
case DwMBsDel et ed:
case DMBLI braryDel et ed:
case DMSSt or edMessageDel et ed:
Common: : ldentifier id;
case DMBNaneChanged:
DVMSNaneChangedEvent | nf o naneChangel nf o;
case DMBLI braryAdded:
DVMSMessageli brary i b;
case DMBSt or edMessageAdded:
St or edDVSMessage st or edMsg;
case DMBSt or edMessageChanged:
DVSSt or edMessageEvent I nf o st or edMsgl nf o;
case DMSSt or edMessagel t emAdded:
DVSSt or edMessagel t em nsgl t em
case DMVBSt or edMessagel t entChanged:
DVSSt or edMessagel t enEvent | nf o st oredMsgl t eml nf o;
case Current DMSSt at us:
DVSSt at usEvent | nf o st at usl nf o;

/**

L I I S

This struct defines the data used to identify the size of a DVS
These data el enents are a subset of the VMS configuration objects
defined in NTCIP. Using the size of the sign and the size of one
character of the sign, one can derive the nunber of rows (for
character matrix and line matrix signs) and the number of colums
(for character matrix signs).

@renber vmsSi gnHei ght Pi xel s I ndicates the nunber of rows of pixels

R1B1 High Level Design 8-15 02/25/00

* contai ned on the sign. (0..65535)
* @renber vnsSi gnW dt hPi xel s I ndicates the nunber of colums of pixels
* contai ned on the sign. (0..65535)
* @renber vnsCharacterHei gt hPi xel s I ndicates the height of a single
character
* in pixels. A value of 0 is used to
i ndi cate
* a variable character height (ful
matri x) (0..255).
* @renber vnsCharacter WdthPi xels Indicates the width of a single
character in
* pi xels. A value of 0 is used to
i ndicate a variable
* character width (full and line matrix)
(0..255).
* @renber
*/
struct SignMetrics
{
| ong vnsSi gnHei ght Pi xel s;
| ong vnsSi gnW dt hPi xel s;
short vmsChar act er Hei ght Pi xel s;
short vmsChar act er W dt hPi xel s;

s

/**

* This struct defines the data used to identify the font used by a DV5
* Currently, only fixed width fonts are support ed.
* @renber fontHeight height in pixels of all characters in the font.
(0..255)
* @renber characterWdth width in pixels of a character. For this
i mpl enent ati on,
* this applies to all characters in the font.
(0..255)
*/
struct FontMetrics
{
short font Height;
short character W dt h;

}s
/**

* This struct defines configuration data required when adding a DMS to the
system
*

* @renber fnsDevicel D ID of this device as known to the FNS

subsystem
* @renber nane Name of this DMS
* @renber signType Type of DWMB.
* @renber signMetrics Si ze of the DM
* @renber fontMetrics Size of the font used by the DM5
* @renber pages Max nunber of pages (aka phases)
supported by the DVS

R1B1 High Level Design

8-16

02/25/00

* @renber agent Host Nane Name of the host where the SNWP agent
(FM5 subsysten) serving

* this device is running.

* @renber SNMPComuni t yNane SNMP conmuni ty nane used by the SNWP
manager for this device.

* @renber configurabl eComili neout Set to true if this device allows the
commtineout (keep alive) to be set.

*/
struct Configuration
{
| ong f msDevi cel D
string nane;
Si gnType si gnType;
Si gnMetrics signhMetrics;
Font Metrics fontMetrics;
| ong pages;
string agent Host Nane;
string SNMPComuni t yNane;
bool ean confi gur abl eComfli nmeout ;
s
/**

* This exception is used to indicate that nmessage text for the sign
formatted using the MIUTI |anguage

* is not properly formed and a parse failure occurred.

*

* @renber reason Reason for the failure.

*/

exception MILTI ParseFai |l ure

{
}s

string reason;

/**

* This exception is used to indicate that the nmessage content is not
approved. This could

* occur if the nessage text includes banned words or if the beacons are
set ON when the

* nmessage text is blank.

*

* @renber reason Reason for the failure.

*/

exception Di sapprovedMessageCont ent

{
Di ctionary:: WrdLi st di sapprovedWrds;
string reason;

1

/**

* This exception is used to indicate that a particul ar DVMS does not
support the

R1B1 High Level Design 8-17 02/25/00

* operation requested. This typically occurs when the DVS does not
support a feature

* that is part of the CHART2 feature set.

*

* @renber reason Reason for the failure.

*/

exception UnsupportedQperation

{
s

string reason;

/**

* This interface is used to represent a DM5 in the field. The system
cont ai ns

* an instance of this interface for each DWVS.

*/

interface DMS : Resour ceManagenent :: Shar edResour ce,
Devi ceManagenent : : CormEnabl ed

{
/**
* This operation returns the type of this DVS.
* @eturn The type of this DMVS.
*/
Si gnType get Si gnType();

/**

* This operation returns the nane that has been given to this DWVB.
*

* @eturn The name of this DMS.

*/

string get Name();

/**

* This operation sets the nanme of this DWVS.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aram nane Nane to be assigned to this DWVS.

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DWVB.

* @xception Conmon:: CHART2Excepti on An error occurred while setting
t he nane.

*/

voi d set Nane(in Common:: AccessToken token, in string nane)

rai ses (Conmon: : AccessDeni ed, Conmmon:: CHART2Excepti on);

/**

* This operation returns the current text and beacon status being
di spl ayed by the sign.

R1B1 High Level Design 8-18 02/25/00

*

* @eturn Current text and beacon state being displayed by the sign
*/
MessageCont ent get Message();

/**

* This operation sets the message and beacon state to be displayed by
t he sign.

* This operation executes asynchronously. It returns to the caller
after queuing the

* command for execution. A ConmandStatus object must be used if the
call er wi shes

* to track the progress of the operation. This operation will trigger
a DMBMessageChanged event

* when the nessage has actually been changed on the DM

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aram nsgContent nessage to be displayed on the DWVB.

* @aram status CommandSt atus object used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Cal |l er does not have proper rights to
performthis

* operation on this DVS

* @xception MILTI ParseFail ure The nessage content contains a malfornmed
MULTI string.

* @xception Di sapprovedMessageContent The content of the nessage
cont ai ns banned words

* or invalid beacon state.

* @xception ResourceManagenent:: ResourceControl Conflict Used to
i ndi cate that the resource is already

* in use by
anot her op center.

* @xception Conmon: : CHART2Excepti on An error occurred while setting
t he nmessage / beacon state.

*/

voi d set Message(i n Comon: : AccessToken token, in MessageCont ent
nmsgCont ent

i n Conmon: : ConmandSt at us st at us)
rai ses (Conmon:: AccessDeni ed, MJILTI Par seFail ure,
Di sappr ovedMessageCont ent ,
Resour ceManagenent : : Resour ceControl Confli ct,

Conmon: : CHART2EXxcept i on) ;

/**

* This operation returns true if the DMS is currently blank

*

* @eturn True if the DMS is blank, False if the DM5 is displaying a
nessage.

*/

bool ean i sBl ank();

R1B1 High Level Design 8-19 02/25/00

/**

* This operation blanks the DMS, causing it to stop displaying any
nmessage that it

* may currently be displaying.

* This operation executes asynchronously. It returns to the caller
after queuing the

* command for execution. A ConmandStatus object nmust be used if the
cal l er wi shes

* to track the progress of the operation. This operation will trigger
a DVSBIl anked event

* when the DMS has actual ly been bl anked.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aram status CommandSt atus object used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DVS

* @xception ResourceManagenent:: ResourceControl Conflict Used to
i ndi cate that the resource is already

* in use by
anot her op center.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d bl ankSi gn(i n Conmon: : AccessToken token, in Common:: CommandSt at us
st at us)

rai ses (Conmon: : AccessDeni ed,

Resour ceManagenent : : Resour ceControl Conflict, Comon:: CHART2Excepti on);

/**

* This operation returns the polling interval used to check the health
of the DVB

*

* @eturn polling interval in seconds.

*/

I ong getPol |l Interval ();

/**

* This operation returns the maxi mum polling interval allowed for this
DVS. This

* max polling interval is used to keep the polling interval from being
set | arger

* than the CommliossTi meout for the sign.

*

* @eturn maxi num polling interval allowed for this sign (in seconds).

*/

| ong get MaxPol | I nterval ();

R1B1 High Level Design 8-20 02/25/00

/**

* This operation is used to set the polling interval for this DV

* This operation executes asynchronously. It returns to the caller
after queuing the

* command for execution. A ConmandStatus object nust be used if the
cal l er wi shes

* to track the progress of the operation.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @araminterval Polling interval in seconds. Zero indicates no
pol I'i ng.

* @aram status CommandSt at us obj ect used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DWVS.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

void setPollInterval (in Comon:: AccessToken token, in long interval, in
Conmon: : CommandSt at us st at us)

rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);

/**

* This operation returns the date and tine the status of this DM5
changed or it was nmanual |y poll ed.
*

* @eturn date and tinme the status of this DM5S | ast changed. (seconds
si nce epoch).

*/

unsi gned | ong get St at usChangeTi ne() ;

/**

* This operation returns the current status of the DMS. This operation
does not cause

* conmmuni cations with the sign and instead the |ast known status is
returned.

*

* @eturn Status of the DMS.

*/

Status getStatus();

/**

* This nmethod causes the DM5 to be polled now instead of waiting for
the normal polling

* cycle. This operation executes asynchronously. It returns to the
caller after queuing the

* command for execution. A ConmandStatus object nmust be used if the
cal l er wi shes

R1B1 High Level Design 8-21 02/25/00

* to track the progress of the operation. After the sign is contacted,
a Current DMSSt at us

* event will be pushed through the event service DVMS channel

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aram status CommandSt at us obj ect used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DMS

* @xception Comon:: CHART2Excepti on An error occurred while perform ng
this operation.

*/

voi d pol | Now(i n Comon: : AccessToken token, in Conmon:: ConmandSt at us
st at us)

rai ses (Conmon:: AccessDeni ed, Common:: CHART2Excepti on);

/**

* This operation is used to reset the DMS controller in the field.
This operation wll

* al so cause the sign to be bl anked.

* This operation executes asynchronously. It returns to the caller
after queuing the

* command for execution. A ConmandStatus object must be used if the
call er wi shes

* to track the progress of the operation. A DVSBI anked event will be
pushed through the

* Event Service to indicate the sign was bl anked.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aram status CommandSt at us object used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DMVS

* @xception ResourceManagenent: : ResourceControl Conflict Used to
i ndi cate that the resource is already

* in use by
anot her op center.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

void resetController(in Conmon::AccessToken token, in
Conmon: : CommandSt at us st at us)

rai ses (Conmon: : AccessDeni ed,
Resour ceManagenent : : Resour ceControl Confli ct,
Conmon: : CHART2Except i on) ;

/**

R1B1 High Level Design 8-22 02/25/00

* This operation returns the timeout used by the DVM5 to determne if
host conmuni cati ons

* are present. This value is configurable on sone DMS nodels, while
fixed on others.

* Some DMB nodels will autonatically blank the sign if no comms to the
sign occur within

* this tinmeout period.

*

* @eturn Commloss tineout in mnutes. (0 - 65535)

*/

| ong get ConmlLossTi neout () ;

/**

* This operation sets the tinmeout used by the DM5 to determine if host
communi cat i ons

* are present. This operation is only valid on DVMS nodel s that support
this feature.

* Setting this value |lower than the polling interval nay cause the sign
to blank its

* di splay due to non-comunications.

* This operation executes asynchronously. It returns to the caller
after queuing the

* command for execution. A ConmandStatus object nust be used if the
cal l er wi shes

* to track the progress of the operation

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS

* @aramtineout Tineout value in mnutes. (0 - 65535)

* @aram status CommandSt at us object used to track the progress of this
operation (may be null).

*

* @xception Common:: AccessDeni ed Cal |l er does not have proper rights to
performthis

* operation on this DVS

* @xception UnsupportedOperation This DVS does not support the setting
of the comm |l oss timeout.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d set ComrlLossTi neout (i n Conmon: : AccessToken token, in |ong
dnsTi meConmLoss, in Conmon: : ConmandSt at us st at us)

rai ses (Conmon:: AccessDeni ed, UnsupportedQOperation

Conmon: : CHART2EXxcept i on) ;

/**

* This operation returns the size of the DMVB

*

* @eturn The size of the display area (in characters)
*/
SignMetrics getSignMetrics();

/**

R1B1 High Level Design 8-23 02/25/00

* This operation returns data regarding the size of the font used for
* this DMS. For this inplenenatation, only one font is supported per
* DM5 and this font must be fixed wi dth.

*/

Font Metrics get Font Metrics();

/**

* This operation returns the operational status of the DVB.
*

* @eturn The operational status of this DWVB.

*/

Devi ceManagenent : : Oper ati onal St at us get Operati onal Stat us();

/**

* This operation returns the nanme of the network site where this DVM5 is
served.

*

* @eturn the name of the network site where the DMS is served.

*/

Conmon: : Net wor kConnecti onSite get Net ConnectionSite();

/**

* This operation is used to create a plan itemthat involves setting a
particul ar

* message on this DVM5. The plan itemcan then be stored as part of a
pl an.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS.

* @aram nessage Stored nessage being associated with this sign via a
plan item

*

* @xception Common:: AccessDeni ed Cal |l er does not have proper rights to
performthis

* operation on this DMV

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*

* @ee Plan
* @ee Planltem
*/
DVSSt or edMessagel t em creat ePl anlt en{i n Comon: : AccessToken t oken,
i n StoredDVSMessage nessage)
rai ses (Conmon:: AccessDeni ed, Common:: CHART2Excepti on);

/**

* This operation is used to renpove this DMS fromthe system
*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this DVS
*

R1B1 High Level Design 8-24 02/25/00

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation on this DMS

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d remove(i n Conmon: : AccessToken t oken)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Except i on);

s

/**

* This interface defines an object that is used to nanage the creation and
del etion

* of DVS objects in the system

*/

i nterface DVMSFactory : ResourceManagenent:: Shar edResour ceManager

{

/**

* This operation creates a DVMS object within the factory.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram config Configuration data for the DVS bei ng creat ed.

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operati on.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

DMS creat eDVS(i n Conmon: : AccessToken token, in Configuration config)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Except i on);

s

/**

* This interface defines an object used to store a nmessage that may be
pl aced on a DVS

*/

i nterface StoredDVBMessage

{

/**

* This operation returns the unique identifier assigned to this object.

*

* @eturn the unique identifier assigned to this object.
*/
Conmmon: : ldentifier getlD();

/**

* This operation returns the description of this stored nessage.
*

* @eturn The description of this stored nessage.

*/

R1B1 High Level Design 8-25 02/25/00

string get MessageDescription();

/**

* This operation sets the description of this stored dns nessage.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram description Description of this stored nessage.

*

* @xception Common:: AccessDeni ed Cal |l er does not have proper rights to
performthis

* operation.

* @xception Common: : CHART2Excepti on An error occurred while perfornmn ng
this operation.

*/

voi d set MessageDescri ption(in Conmon:: AccessToken token, in string
descri ption)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* This operation returns the nessage content stored in this stored
nessage.

*

* @eturn Message content stored in this stored nessage.
*/
St or edMessageCont ent get MessageContent () ;

/**

* The operation sets the content of this stored nessage.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram nsgContent Content of nessage to be stored in this stored
nessage.

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Di sapprovedMessageCont ent Message contai ns banned words or
t he beacon state is invalid.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d set MessageContent (i n Comon: : AccessToken token, in
St or edMessageCont ent nmsgCont ent)

rai ses(Comon: : AccessDeni ed, Di sapprovedMessageContent,

Conmon: : CHART2EXxcept i on) ;

/**

* This operation returns the mninumcharacter width of a sign that
wi shes to display this

R1B1 High Level Design 8-26 02/25/00

* stored nessage in a legible fashion

*

* @eturn The mi nunmum nunber of characters wide a DMS nust be to
di splay the contents of this nessage.

*/

| ong get M nCharacters();

/**

* This operation renpves this stored nessage fromthe system

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

*

* @xception Common:: AccessDeni ed Cal |l er does not have proper rights to
performthis

* operati on.

* @xception Comon:: CHART2Excepti on An error occurred while performn ng
this operation.

*/

voi d renove(i n Conmon: : AccessToken t oken)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Except i on);

}s

/**

* This typedef defines a sequence of stored nmessages.

*/

t ypedef sequence <StoredDVSMessage> Stor edDVSMessageli st

/**

This struct defines the data needed to create a StoredDVSMessage.

*
*

* @renber nsgContent Content of the nessage.

* @renber nsgDescription Description of the nessage.

* @renber category Category assigned to this nessage.

* @renber ni nCharacters M ni num nunber of characters wide a DVS nust be to
di splay this nessage.

* @renber createdBy Nane of the user that created this nessage.

*/

struct StoredDVSMessageCreationStruct

{
St or edMessageCont ent nsgCont ent ;
string nsgDescri pti on;
string cat egory;
| ong nm nChar act ers;
string creat edBy;

1

/**

* This interface defines an object used as a collection of
St or edDVSMessages.
*

R1B1 High Level Design 8-27 02/25/00

*/
i nterface DMSMessageli brary
{

/**

* This operation returns the unique identifier assigned to this object.
* @eturn The unique identifier assigned to this object.

*/

Common: : ldentifier getlX);

/**

* This operation returns the name of this library
*

* @eturn The nane of this library.

*

/

string get Name();

/**

* This operation sets the nanme of this library.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram nane Nane to be assigned to this library.

*

* @xception Comon: : AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d set Nanme(in Common:: AccessToken token, in string name)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* This operation creates a new StoredDVSMessage in this library.
*
* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.
@ar am nessage Message data used to create new StoredDVSMessage

*
*
* @eturn Newy created StoredDVSMessage obj ect.

@xception Conmon: : AccessDeni ed Call er does not have proper rights to

performthis

* operati on.

* @xception Di sapprovedMessageContent Message content specified has
banned words or beacon state is invalid.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

St or edDVSMessage addMessage(i n Conmon: : AccessToken token, in
St or edDVSMessageCreat i onSt ruct nessage)

R1B1 High Level Design 8-28 02/25/00

rai ses(Comon: : AccessDeni ed, Di sapprovedMessageContent,
Conmon: : CHART2Except i on) ;

/**

* This operation renoves a StoredDVBMessage fromthis library and the
system
*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @ar am nessage St oredDVSMessage to be renoved.

*

* @xception Common: : AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d renoveMessage(in Comon: : AccessToken token, in StoredDVSMessage
nmessage)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* This operation returns a |ist of the stored nmessages contained in
this library.
*

* @eturn List of stored nessages contained in this library.
*

/

St or edDVSMessageli st get St or edMessages() ;

/**

* This operation returns a list of plans that are using a given stored
nessage.
*

* @eturn List of plans using this stored nessage. The returned li st
will be
* enpty if there are no plans using the nessage.
*/
Pl anManagenent : : Pl anLi st get Pl ansUsi ngMessage(i n St or edDMSMessage negQ) ;

/**

* This operation renpves the library fromthe system

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operati on.

* @xception Comon: : CHART2Excepti on An error occurred while perform ng
this operation.

*/

R1B1 High Level Design 8-29 02/25/00

voi d renove(i n Conmon: : AccessToken t oken)
rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Except i on);

b

/**

* This typedef defines a |ist of DMSMessagelibrary objects.
*/

typedef sequence <DMSMessageli brary> DVSMessageli brarylLi st;

/**

* This interface defines a factory used for creating and renoving
DVSMessageli brari es.

*/

i nterface DMVSLI braryFactory

{

/**

* This operation creates a new library.

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram nane Nane of the library to be created

* @eturn New y created DVSMessageli brary object.

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Comon: : CHART2Excepti on An error occurred while perform ng
this operation.

*/

DVSMessageli brary createLi brary(in Conmon: : AccessToken token, in string
nane)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Except i on);

/**

* This operation returns a list of Libraries that are managed by this
factory.

*

* @eturn A List of libraries being nmanaged by this factory.
*/
DVMSMessageli brarylLi st getLibraryList();

1

/**

* This interface defines a plan itemthat is used to associate a DVM5 with

* stored nessage. Wen a plan itemof this type is activated it will call
* set Message on the DVB passing it the nmessage content to display.

*/

i nterface DMSStoredMessageltem : Pl anManagenent:: Planltem

/**

* This operation sets the DVS contained in this plan item

R1B1 High Level Design 8-30 02/25/00

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram dns DVS where nessage will be set when this plan itemis
activat ed.

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*

* @ee DVS
* @ee StoredDVSMessage
*
/
voi d set DMS(i n Conmmon: : AccessToken token, in DVS dns)
rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* This nmethod returns the DVS that will receive the nmessage if this
plan itemis

* activat ed.

*

* @eturn the DMS that will receive the nessage if this plan itemis
activat ed.

*/

DVMS get DVS() ;

/**

* This operation sets the Stored Message contained in this plan item

*

* @aramtoken Access token used to verify the caller's right to
performthis operation on this object.

* @aram nessage Message to be set on the DVS when this plan itemis
activat ed.

*

* @xception Common:: AccessDeni ed Call er does not have proper rights to
performthis

* operation.

* @xception Common: : CHART2Excepti on An error occurred while perforn ng
this operation.

*/

voi d set Message(i n Comon: : AccessToken token, in StoredDVSMessage
nmessage)

rai ses(Comon: : AccessDeni ed, Conmon: : CHART2Excepti on);

/**

* This operation returns the nessage to be set on the DVM5 when this
plan itemis activated.
*

* @eturn the nessage to be set on the DVM5 when this plan itemis
acti vat ed.
*/

R1B1 High Level Design 8-31 02/25/00

St or edDVSMessage get Message() ;

1
1
#endi f
/*
Fil e Name . PlanManagenent . i dl
Prepared by . Conputer Sciences Corporation / PB Farradyne, Inc.
+o-mmm - + Copyri ght 1999, Maryland Departnment of Transportation
| NMDOT | Al Rights Reserved
Fommm o - Fom e aa o

This file is property of the Maryl and Departnent of
Transportation. Any unauthorized use or duplication of this
file, or renmoval of the header, constitutes theft of

intell ectual property.

Description . This file contains the IDL definitions for plans.
Hi story

Dat e Aut hor Description

Y

#i fndef _PLAN_MANAGEMENT | DL_
#define _PLAN_MANAGEMENT | DL_

#i ncl ude <Conmon. i dl >

#pragma prefix " CHART2"

/**
* This nmodul e contains the definitions of the IDL interfaces
* used in creating plans. Plans represent a task which is
* repetative in nature that the systemw ||l autonate. Each
* plan consists of a set of items and nmay be acti vat ed.
* When the plan is activated, it will tell each itemto activate
* It isup tothe itemto determine what actions need to be taken
* in order to perform activation
*/
nodul e Pl anManagenent
{
interface Planltem
i nterface Pl an;
/**
* A collection of plan itens
*/

R1B1 High Level Design 8-32

02/25/00

t ypedef sequence<Pl anlten» Pl anltenlist;

/**

* A collection of plans

*

/

t ypedef sequence<Pl an> Pl anLi st ;

/**

* This enum descri bes the types of events that can be

* pushed for plans. When a plan itemis added or nodified
* it is up to the derived itemtype to push the appropriate
* event.

*

* @renber Pl anAdded Pushed when a plan is added.

* @renber Pl anRenoved Pushed when a plan is renpved.

* @renber Pl anltenRenoved Pushed when a plan itemis renoved.
*

* @ee Pl anEvent

*

~

enum Pl anEvent Type

{

Pl anAdded,

Pl anRenpved,

Pl anl t emRenoved
s
/**

* This union maps the event types for plans to the
* data necessary for those events.

*

* @ee Pl anEvent Type

*/
uni on Pl anEvent switch (Pl anEvent Type)
{
case Pl anAdded:
Pl an pl an;
case Pl anRenoved
Conmon: : I dentifier planlD
case Pl anltenRenoved
Conmmon: : I dentifier planltem D
s
/**

* Interface for the base plan item Each plan itemis capable of being

* activated. This interface will serve as the base for future itens which

* each know the specific actions which need to be perfornmed upon
activation.

*

* @ee Plan

* @ee CHART2. DMSControl . DMSSt or edMessagel t em

*/

R1B1 High Level Design 8-33 02/25/00

interface Planltem

{

/**

* Returns the unique identifier of the plan item
*

* @eturn The unique identifier of the plan item
*/

Conmmon: : ldentifier getlD();

/**

* Changes the nane of the plan item
*
@aram token - Access token used to verify the caller's right to
performthis operation.
@aram name - New nane of the plan item

*
*
*
*
* @xception Common:: AccessDenied - Caller does not have proper
* rights to performthis operation.
* @xception Common: : CHART2Exception - A general error occurred while
* attenpting the conmmand.

*/

voi d set Nanme(in Common:: AccessToken token, in string name)

rai ses (Conmon: : AccessDeni ed, Common:: CHART2Excepti on);

/**

* Returns the nane of the plan item
*

* @eturn The nane of the plan item
*/

string get Name();

/**

* Activates the plan item

*

* @aramtoken - Access token used to verify the caller's right to
performthis

* operation.

* @aram commandStatus - **Optional ** Object which will be called to
show t he

* progress of the conmand if the client wants
stat us

* updates. Pass null if status updates are not

* needed.

*

* @xception Common:: AccessDenied - Caller does not have proper

* rights to performthis operation.
* @xception Common:: CHART2Exception - A general error occurred while
* attenpting the conmand.

*/

void activate(in Comron:: AccessToken token,
i n Conmon: : ConmandSt at us commmandSt at us)
rai ses (Conmon: : AccessDeni ed, Common:: CHART2Excepti on);

R1B1 High Level Design 8-34 02/25/00

/**

Rermoves the plan itemfromthe system

@aram token - Access token used to verify the caller's right to
performthis operation.

*
*
*
*
*
* @xception Common:: AccessDenied - Caller does not have proper

* rights to performthis operation.
* @xception Common: : CHART2Exception - A general error occurred while
* attenpting the conmand.

*/

voi d renove(i n Conmon: : AccessToken t oken)

rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);
/**
* Determ nes whether the given object is being used by the plan item
* @aramobjectID - The ID of the object to check the plan itemfor.
*
* @eturn True if the plan itemis using the object, fal se otherw se.

*/
bool ean i sUsi ngObj ect (in Common::ldentifier objectlD);

1
/**
* Interface for a plan. The plan contains zero or nore plan itens. A
pl an
* can be activated, at which time it will activate each of the plan itens

*
*

*

*/

that it contains.

@ee Planltem

interface Pl an

{

/**

* Returns the unique identifier of the plan.

*

* @eturn - The unique identifier of the plan.
*/
Conmmon: : ldentifier getlDX);

/**

* Changes the nane of the plan.

*

* @aramtoken - Access token used to verify the caller's right to
* performthis operation.

* @aram nane - New nane of the plan.

* F X

@xception Conmon: : AccessDenied - Caller does not have proper
rights to performthis operation.

R1B1 High Level Design 8-35 02/25/00

* @xception Common: : CHART2Exception - A general error occurred while
* attenpting the conmand.
*/
voi d set Nane(in Comon:: AccessToken token, in string name)
rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);

/**

* Returns the nane of the plan.

*

* @eturn The nane of the plan.
*/
string get Nanme();

/**

* Adds a plan itemto the plan.
*

* @aramtoken - Access token used to verify the caller's right to
perform

* this operation.

* @aramitem - Itemto add to the plan.

*

* @xception Common:: AccessDeni ed - Caller does not have proper

*

rights to performthis operation.
* @xception Common: : CHART2Exception - A general error occurred while

attenpting
* t he conmand.

*/

voi d addlten{in Comon:: AccessToken token, in Planltemiten)

rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);

/**

* Renpves an itemfromthe plan.

*

* @aramtoken - Access token used to verify the caller's right to
perform

* this operation.

* @aramitem- Plan itemto renmove fromthe plan.

*

* @xception Common:: AccessDenied - Caller does not have proper

* rights to performthis operation.
* @xception Common:: CHART2Exception - A general error occurred while
* attenpting the conmand.

*/

voi d rermovel ten(in Conmon:: AccessToken token, in Planltemitem
rai ses (Conmon:: AccessDeni ed, Common: : CHART2Excepti on);

/**
* Attenpts to activate all of the plan itens.

It is the responsibility of the plan, when activated, to sumari ze
the status of the activation of each plan item and report that

* F X

R1B1 High Level Design 8-36 02/25/00

* information to the CommandStatus object if one is passed.
*
* @aramtoken - Access token used to verify the caller's right to
perform
this operation.
@ar am comandStatus - **Qptional** WII be called as the individual
plan items are being activated to show status.
Pass null if status updates are not needed.

@xception Conmon: : AccessDenied - Caller does not have proper
rights to performthis operation.
@xception Conmon: : CHART2Exception - A general error occurred while
attenpting the conmand.

L R S S

/

voi d activate(in Conmon:: AccessToken token, in Common:: CormandSt at us
conmandSt at us)
rai ses (Conmon:: AccessDeni ed, Common:: CHART2Excepti on);

/**

* Returns all of the plan itens in the plan.
*

* @eturn All of the plan itens in the plan.
*/
Pl anltemnli st getltens();

/**

* Determ nes whether the given object is being used by the plan.

* @aramobjectID - The ID of the object to check the plan for.

*

* @eturn - True if the plan is using the object, false otherw se.

*/
bool ean i sUsi ngObj ect (in Common::ldentifier objectlD);

s

/**

* This interface manages all of the systemplans. It creates each one

* and stores it in a collection. It has nethods which operate on all of
t he

* plans as a group.

*/

i nterface Pl anFactory

{

/**

* Creates a new plan and adds it to the system
*
* @aramtoken - Access token used to verify the caller's right to
perform
* this operation.
* @aram nane - The nane of the new plan.

*

* @xception Common:: AccessDenied - Caller does not have proper

R1B1 High Level Design 8-37 02/25/00

* rights to performthis operation
* @xception Common:: CHART2Exception - A general error occurred while
* attenpting the conmand.
*/
Pl an createPl an(in Common: : AccessToken token, in string nane)

rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);

/**

* Returns all of the plans in the factory.

*

* @eturns Al of the plans in the factory.
*/
Pl anLi st get Pl ans();

/**
* Determ nes which of the plans are using the object having the
* specified identifier.
* @aramobjectID ldentifier of the object to query for
*
* @eturns Al plans in the factory which are currently using the
obj ect.
*/
Pl anLi st get Pl ansUsi ngQbj ect (i n Common: :ldentifier objectlD)
1
}; /! end nodul e Pl anManagenent
#endi f
/*
Fil e Name : ResourceManagenent . i dl
Prepared by . Conputer Sciences Corporation / PB Farradyne, Inc.
R + Copyright 1999, Maryland Departnent of Transportation
| NMDOT | Al Rights Reserved
Foemo - o e e e e e e e e e e

This file is property of the Maryl and Departnent of
Transportation. Any unauthorized use or duplication of this
file, or renoval of the header, constitutes theft of

intell ectual property.

Description . This file contains IDL definitions for the Resource
Managenment
nmodul e. This includes the interfaces:

Shar edResour ce

Shar edResour ceManager

Oper ati onsCent er

User Logi nSessi on

Organi zati on

R1B1 High Level Design 8-38 02/25/00

H story
Dat e Aut hor Description

*/

#i f ndef _RESOURCE_MANAGEMENT | DL_
#defi ne _RESOURCE_MANAGEMENT | DL_

#i ncl ude <Common. i dl >

#pragma prefix " CHART2"

/**

* This nmodul e contains the definitions of the IDL interfaces

* pertaining to shared resources, operations centers, user |ogin sessions,
* and organi zati ons.

*/

nmodul e Resour ceManagenent

{

i nterface SharedResour ce;
i nterface UserLogi nSessi on

/**

* A sequence of shared resources.

*/

t ypedef sequence<Shar edResour ce> Shar edResour celi st ;

/**

* A sequence of user |ogin sessions.

*/

t ypedef sequence<User Logi nSessi on> Logi nSessi onlLi st ;

/**

* Exception which describes a login failure.
*

* @renber reason - the explanation for the failure.
*/
exception Logi nFailure

{
}s

string reason;

/**

* Exception which describes a | ogout failure.

*

* @renber reason - the explanation for the failure.
*/

R1B1 High Level Design 8-39 02/25/00

exception Logout Fail ure

{
string reason;
1
/**
* Exception which describes a failure caused when the user tries
* to do sonething which requires that no resources be controlled, yet
* the Operations Center in which the user is logged intois
* still controlling one or nore shared resources.
*
* @renber reason - the explanation for the failure.
*/
exception HasControl | edResour ces
{
string reason;
1
/**
* Exception which describes a failure caused when the user attenpts
* to do sonmething with the resource, but the resource is already being
* controlled by another operations center
*
* @renber reason - the explanation for the failure.
*/
exception ResourceControl Confli ct
{
string reason
1
I e
/**

* Enumer ation which describes all of the resource-related event types.

*

* @renber Unhandl edCont rol | edResour cesEvent - event pushed when an
QperationsCenter has controll ed

* resources but no logged in
users.

*

* @ee ResourceEvent

*/

enum Resour ceEvent Type

Unhandl edCont r ol | edResour cesEvent

s

/**

* Event data pushed when an QperationsCenter has controlled
* resources but no logged in users.

*

R1B1 High Level Design 8-40 02/25/00

* @renber opCtrID - the ID of the Operations Center with controlled
resour ces
* @renber opCtrNane - the name of the Operations Center
*/
struct Unhandl edContr ol | edResour cesl nfo
{
Conmmon: : I dentifier opCrlD;
string opCtrNaneg;
1

/**

* Uni on which nmaps all resource-related event types to the
* associ ated event data.
*
* @renber unhandl edResources - data describing the
Unhandl edCont r ol | edResour cesEvent
* event type.
*
* @ee ResourceEvent Type
* [
uni on Resour ceEvent swi tch(ResourceEvent Type)
{
case Unhandl edCont rol | edResour cesEvent :
Unhandl edCont r ol | edResour cesl nf o unhandl edResour ces;

s

/**

* Interface which represents an Operations Center. It contains

* functionality for |ogging users in and out and managi ng controlled
resources.

*/

i nterface OperationsCenter

{

/**

* Returns the unique identifier of the operations center

*

* @eturn the unique identifier of the operations center
*/
Conmmon: : ldentifier getlD();

/**

* Returns the nane of the operations center.
*

* @eturn the nane of the operations center
*/
string get Nane();

/**

* Logs a user into the operations center. |If successful, it wll

R1B1 High Level Design 8-41 02/25/00

generate an access token which the caller nust store for the user
to performany restricted operations.

@aram | ogi nSession - the login session to keep track of.
@aram userNanme - the user's login ID
@ar am password - the user's password.

E I T R R

@eturn The access token which is required for restricted CHART2
operations.
*

* @xception LoginFailure indicates a login failure, possibly caused by

an

* i nval id user nane or password.

*/

Conmon: : AccessToken | ogi nUser (i n UserLogi nSessi on | ogi nSessi on

i n Conmmon: : User Nanme user Nane,
in string password)
rai ses (LoginFailure);

/**

* Logs a user out of the operations center. This requires

* that no controlled resources be assigned to the operations

* center if this is the last person to |og out.

*

* @aram | oginSession - the login session to | og out.

*

* @xception LogoutFailure indicates a |logout failure, possibly caused
by

* an invalid |l ogin session

* @xception HasControl |l edResources indicates that this is the |ast
person

* to log out of the Op Center, yet
t here

* are still shared resources being
controll ed.

*/

voi d | ogout User (i n User Logi nSessi on | ogi nSessi on)
rai ses (Logout Fail ure, HasControll edResources);

/**

* Gets the shared resources which are currently being
* controlled by this operations center
*
*

@eturn The shared resources which are currently being controlled by
* this operations center
*/
Shar edResour celLi st get Control | edResources();

/**

* Gets all of the users currently logged into this operations center.

*

* @aramtoken - access token required for the restricted operation

R1B1 High Level Design 8-42 02/25/00

have

have

due

@eturn The | ogin session objects for all logged in users.

* % F

@xception Conmon: : AccessDeni ed i ndicates that the caller does not

* perm ssion to call this method.

*/

Logi nSessi onLi st get Logi nSessi ons(i n Conmon: : AccessToken t oken)
rai ses (Conmon: : AccessDeni ed);

/**
Forces the specified user to be | ogged out fromthe system

This action will not be prevented if there are controlled resources
and it is the last user to be |ogged out.

@aram t oken - access token required for the restricted operation.
@aram | ogi nSession - the login session of the user to be | ogged out.

* % kX X Xk

@xception Conmon: : AccessDeni ed i ndicates that the caller does not

* %k

perm ssion to call this nethod.
@xception Logout Failure indicates that the [ogout failed, possibly

* to an unknown or invalid | ogin session
*/
voi d forceLogout (i n Conmon: : AccessToken token, in UserlLogi nSessi on

| ogi nSessi on)

rai ses (Conmon: : AccessDeni ed, LogoutFail ure);

/**

* Gets the number of users currently logged in to this operations

center.

*

* @eturn The nunber of users currently |ogged in.
*/
| ong get Nunioggedl nUsers();

/**

* Transfers control of the shared resources to the target operations

center.

have

@aram token - access token required for the restricted operation
@aram resources - the shared resources to transfer control of.
@aram target OpCenter - the operations center to transfer control to.

* %k F X X

@xception Conmon: : AccessDeni ed i ndicates that the caller does not

* perm ssion to call this nmethod.
*/
voi d transfer SharedResour ces(i n Conmon: : AccessToken t oken
i n SharedResourceli st resources,
in QperationsCenter targetOpCenter)

R1B1 High Level Design 8-43 02/25/00

rai ses (Conmon: : AccessDeni ed);

}; /1 end interface OperationsCenter

/**

* | nterface which represents an instance of a user being |ogged in at
* an Qperations Center.

*/

i nterface UserLogi nSessi on

{

/**

* Gets the operations center that the user is logged in to

*

* @eturn The login session objects for all |ogged in users.
*/
OperationsCenter get OpCenter();

/**

* Gets the login ID of the user.

*

* @eturn The login I D of the user.
*/
Conmon: : User Name get User name() ;

/**
Tests to nake sure the Logi nSession still exists

*

* Note - if it does not exist, a CORBA exception wll

* be thrown, so the return statenent will not be execut ed.
*

* @eturn True if the Logi nSession still exists.
*

/

bool ean ping();

/**

* Forces the logout of the user. This will do clean up

* for the user being | ogged out.

*

* @aramtoken - access token required for the restricted operation

*

* @xception Common:: AccessDeni ed i ndicates that the caller does not
have

* permi ssion to call this nethod.

*/

voi d forceLogout (i n Conmon: : AccessToken token)
rai ses (Conmon: : AccessDeni ed);

}; // end interface UserlLogi nSessi on

R1B1 High Level Design 8-44 02/25/00

/**
* Interface which represents an Organi zati on.
*/
i nterface Organization
{
/**

* Returns the unique identifier of the organization.

*

* @eturn The unique identifier of the organization
*/
Conmmon: : ldentifier getlX);

/**

* Returns the nane of the organization.
*

* @eturn The nane of the organization
*/

string get Name();

/**

* Interface used by all shared resources which can be controlled
* by an operations center.

*/

i nterface SharedResource

{

/**

* Returns the unique identifier of the shared resource.

*

* @eturn The unique identifier of the shared resource.
*/
Conmmon: : ldentifier getlX);

/**

* Returns the operations center which currently has control of this
resource, or null.
*

* @eturn The operations center which currently has control of this
resour ce,

* or null if no operations center currently controls the
resource.

*/

OperationsCenter getControllingQpCenter();

/**

* Returns the organization which owns the resource.

R1B1 High Level Design 8-45 02/25/00

*

* @eturn The organi zation which owns the resource.
*/
Organi zation get OwmerOrg();

/**

* Returns true if the resource is currently being controlled
by the given operations center.

*

*

* @aramopCtrID - the operations center to check

* @eturn True if the resource is controlled by the operations center;
ot herwi se, false.

*/

bool ean i sControl |l edBy(in Common::ldentifier opCrlD);

/**

* Sets the controlling operations center to be the specified operations

center.

*

* @aramtoken - access token required for the restricted operation

* @aramopClDtr - the operations center to set as controlling

* @xception Common:: AccessDeni ed i ndicates that the caller does not
have

* perm ssion to call this nethod.

*/

voi d setControl lingOpCenter(in Common:: AccessToken token, in
Common: : I dentifier opCtrlD)
rai ses (Conmon: : AccessDeni ed);

/**

* Clears the controlling operations center.

*

* @aramtoken - access token required for the restricted operation

* @xception Comon: : AccessDeni ed indicates that the caller does not
have

* perm ssion to call this nethod.

*/

void clearControllingOpCenter(in Conmon:: AccessToken token)
rai ses (Conmon:: AccessDeni ed);

}; /! end interface SharedResource

/**

* This interface maintains a collection of zero or nore shared resources,
* and has nmethods for dealing with themas a group

*/

i nterface SharedResourceManager

{

/**

R1B1 High Level Design 8-46 02/25/00

* Gets all of the shared resources in the manager
*

* @eturn All of the shared resources in the nmanager.
*/
Shar edResour ceLi st get Resources();

* %

i Returns the shared resources which are currently being controlled by
the * given operations center.

*

* @aramopCr - the specified controlling operations center

*

* @eturn The shared resources which are currently being controlled by
the */ gi ven operations center

*

Shar edResour ceLi st get Control | edResources(in OperationsCenter opCtr);

/**

* Determ nes whether there are any shared resources which are being
* controlled by the given operations center
*
*

@aram opCtr - the specified controlling operations center
* @eturn True if any of the shared resources are currently being
controll ed
* by the given operations center
*/
bool ean hasControl | edResources(in OperationsCenter opCr);
}; I/ end interface SharedResourceManager
}; /! end nodul e ResourceManagenent

#endi f

/*
Fil e Nane . User Managenent . i dl
Prepared By : Conputer Sciences Corporation / PB Farradyne, |nc.

+o-mmm - + Copyri ght 1999, Maryland Departnment of Transportation
| MDOT | Al'l Rights Reserved

This file is property of the Maryl and Departnment of
Transportation. Any unauthorized use or duplication of this
file, or renoval of the header, constitutes theft of

i ntell ectual property.

Description : This file contains interface definition | anguage desri bi ng

R1B1 High Level Design 8-47 02/25/00

t he nodul e contai ning access control related definitions for
the CHART 2 project.

Hi story
Dat e Aut hor Description

*/

#i f ndef _CHART2_USERVANAGEMENT | DL_
#define _CHART2_ USERVANAGEMVENT | DL_

#i ncl ude <Conmon. i dl >

#pragma prefix " CHART2"

/**

* | nterfaces needed to configure user profiles.

*

* This nmodul e contains the interfaces necessary to mange and utilize user
* profiles.

*/

nodul e User Managenent

{

/**

* Name assigned to a role.

*

* The rol e name nust be uni que and nust be no | onger than

* 32 bytes.
*/
typedef string Rol eNane;
/**
* Represents a set of user capabilities.
*
* Each role has a name which uniquely identifies it and
* a verbose description. The description is used to
* allow a systemadm nistrator to attach a neani ngfu
* description to the role as a rem nder of what it nmeans to
* grant it to a user. Each role is assigned zero or nore functiona
* rights. Roles are then assigned to users to grant them
* access to system functions.
*
* @enber nane - Nane of this role
* @renber description - Verbose description of the role
*/
struct Role
{
Rol eNanme nane;
string description;
1

R1B1 High Level Design 8-48 02/25/00

/**

* Represents a particular user capability.
*
* A functional right grants a particular capability to perform
* system functions. Each functional right nay be limted by
* attaching the identifier of a particular organization to which
* this right is constrained. This capability allows an adm nistrator
* to grant a particular Role the ability to nmodify only shared
* resources owned by the identified organization. The orgFilter
* identifier CHART2 will allow access to any organi zati ons shared
* resources.
*
* @renber id - Uni que identifier for this system capability
* @renber orgFilter - The id of an organi zati on whose shared
* resources this functional right is
* granting access.
*
* @ee CHART2. Resour ceManagenent . Shar edResour ce
*/
struct Functi onal Ri ght
{
unsi gned long id;
Conmmon: : ldentifier orgFilter
s
/**
* Alist of functional rights
*/
t ypedef sequence<Functional Ri ght> Functional R ghtLi st;
/**
* Alist of roles
*/
t ypedef sequence<Rol e> Rol elLi st;
/**
* Alist of user nanes
*/

t ypedef sequence<Conmon:: User Name> User Li st ;

/I User Manager exceptions

/**

* The username specified is not valid.
*

* @renber nanme - The invalid nane.
* @renber reason - Reason the nane is invalid.

*/
exception InvalidUser Nane
{
Conmon: : User Nane nane;
string reason
1

R1B1 High Level Design 8-49 02/25/00

/**

* The password specified is invalid.

*/
exception Inval i dPassword
{
Conmon: : Password password; //The invalid password
string reason; // Reason the password is not valid
1
/**

* Thrown when an attenpt is nmade to define a role which already
* exists.

*/

exception DuplicateRole

{

1

/**

* Thrown when the specified role nane does not exist in the
* dat abase.

*/

exception InvalidRol e

{

1

/**

* Thrown when an attenpt is nmade to delete a role which has
* users assigned to it.

*/

exception Rol el nUse

{
b

/**

* Thrown when an attenpt is nmade to add an invalid functional right
* to a role.
*
* @renber right - The invalid right.
* @renber reason - Reason the right is not valid.
*/
exception InvalidFunctional Ri ght
{
Functi onal Ri ght right;
string reason

s

/**

* Thrown when a user nane is passed that is not in the user database.
*/

excepti on UnknownUser

{
}s

/**

R1B1 High Level Design 8-50 02/25/00

* Thrown when the password specified for a user does not
* match that user's password in the database.

*/

exception IncorrectPassword

{

s

/**

* Thrown when an attenpt is nmade to delete a user who is currently

* | ogged in.

*/

exception User Loggedl n

{

s

/**

* Interface for configuration of user accounts for the CHART2 system

*

* This interface provides access to information in the CHART2 system user
* database. It allows for the conplete configuration of user accounts and
* querying of a users current information.

*/

i nterface User Manager

{

/**

* Creates a new user.

*

* This nmethod will create a new user with the specified user nane and
password in the

* user database.

*

* @aramtoken - Access token of the client attenpting to create the
user.
@ar am usernane - Nane of new user to add.
@ar am password - Password of new user

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this nethod.

@xception |InvalidUserNane - Thrown when the specified user nane is a

duplicate

*

* ok X ¥ 3k X X

of an existing user or otherw se
vi ol at es user

* nam ng conventions for the CHART2
system

* @xception InvalidPassword - Thrown when the specified password
vi ol at es

* password conventions for the CHART2
system

* @xception Common:: CHART2Excepti on - Thrown when a general error
occurs.

*/

voi d createUser (in Comon: : AccessToken token, in Conmon:: User Nane
user nane, in Conmon:: Password password)

R1B1 High Level Design 8-51 02/25/00

Conmmon: :

/*

*

* F F ok

user.

exist in

* * X =

occurs.
*/
Vo
user nane

Conmon: :

/*

E T T T T R B

occurs.
*/
Us

/*

*

* F ok

rai ses(Comon: : AccessDeni ed, InvalidUserName, |nvali dPassword,
CHART2Except i on);

*

Del etes an existing user.

This method will delete the specified user fromthe system database.

@aram token - Access token of the client attenpting to delete the

@ar am usernane - Nane of new user to delete.

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this nethod.

@xception UnknownUser - Thrown when the specified user does not

t he system user database.

@xception UserLoggedlin - Thrown if the user is currently |ogged in.

@xception Conmon: : CHART2Exception - Thrown when a general error

i d del eteUser (in Common:: AccessToken token, in Conmmon:: User Nane

)

rai ses(Comon: : AccessDeni ed, UnknownUser, UserLoggedln,
CHART2Except i on);

*

Gets a list of all users in the system

This method will return a list of all users in the system user
dat abase.

@aram token - Access token of the invoking client.

@eturn - The current list of user names in the database.

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona

rights to access this method.
@xception Conmon: : CHART2Exception - Thrown when a general error

erLi st getUsers(in Common:: AccessToken token)
rai ses (Conmon:: AccessDeni ed, Common: : CHART2Excepti on);

*
Creates a new role.
This method will create a newrole in the system user database.

@aram token - Access token of the invoking client.

R1B1 High Level Design 8-52

02/25/00

t he

* F X F *

*

*

occurs.

*/

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this nethod.

@xception DuplicateRole - Thrown when the nane of the role to create

mat ches the name of an existing role i

system user dat abase.
@xception Conmon: : CHART2Exception - Thrown when a general error

voi d creat eRol e(in Cormmon: : AccessToken token, in Role role)

rai ses(Comon: : AccessDeni ed, Dupli cateRol e,

Conmon: : CHART2Except i on) ;

occurs.

previously been
*

user

/**

* Gets a list of all roles in the system

*

* This method will return a list of all roles in the system user

* dat abase.

*

* @aramtoken - Access token of the invoking client.

*

* @eturn - The current list of roles in the database.

*

* @xception Comon:: AccessDeni ed - Thrown when the client does not
* have t he appropriate functiona
* rights to access this nethod.

* @xception Common:: CHART2Excepti on - Thrown when a general error
*/

Rol eLi st get Rol es(i n Comon: : AccessToken t oken)

rai ses (Conmon: : AccessDeni ed, Common: : CHART2Excepti on);

/**

L S T T R R B R

*

Grants the specified role to the specified user.

This method will grant the specified role to the specified user
this action will result in the user having all functional rights
assigned to the role upon his/her next |ogin.

@aram token - Access token of the invoking client.
@aram user - Nanme of the user to grant the role to.
@aramrole - Nane of the role to grant.

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this nethod.

@xception DuplicateRole - Thrown when the user already has

granted the specified role.

n

@xception InvalidRole - Thrown when the role does not exist in the

R1B1 High Level Design 8-53

02/25/00

* dat abase.

* @xception UnknownUser - Thrown when the user does not exist in the
user

* dat abase.

* @xception Common: : CHART2Excepti on - Thrown when a general error
occurs.

*/

voi d grant Rol e(i n Common: : AccessToken token, in Comon:: User Name user
i n Rol eNanme role)

rai ses(Comon: : AccessDeni ed, DuplicateRole, InvalidRole,

UnknownUser, Common: : CHART2Excepti on);

/**

* Revokes the specified role fromthe specified user

*

* This method will revoke the specified role fromthe specified user

* This action will result in the user having reduced functional rights

* upon hi s/ her next |ogin.

*

* @aramtoken - Access token of the invoking client.

* @aram user - Name of the user to revoke the role from

* @aramrole - Name of the role to revoke.

*

* @xception Common:: AccessDeni ed - Thrown when the client does not

* have t he appropriate functiona

* rights to access this method.

* @xception InvalidRole - Thrown when the role does not exist in the
user

* dat abase.

* @xception UnknownUser - Thrown when the user does not exist in the
user

* dat abase.

* @xception Common: : CHART2Excepti on - Thrown when a general error
occurs.

*/
voi d revokeRol e(i n Conmon: : AccessToken token, in Common:: User Nane user
i n Rol eNarme role)
rai ses(Comon: : AccessDeni ed, |nvalidRole, UnknownUser,
Conmon: : CHART2EXxcept i on) ;

/**

* Deletes the specified role fromthe system user database

*

* This nmethod will delete the specified role fromthe system user db

* This method will not succeed if any users in the database are
currently

* assigned to the role.

*

* @aramtoken - Access token of the invoking client.

* @aramrole - Name of the role to delete.

*

* @xception Common:: AccessDeni ed - Thrown when the client does not

* have t he appropriate functiona

R1B1 High Level Design 8-54 02/25/00

* rights to access this nethod.

* @xception InvalidRole - Thrown when the role does not exist in the
user

* dat abase.

* @xception Common: : CHART2Excepti on - Thrown when a general error
occurs.

*/

voi d del et eRol e(i n Common: : AccessToken token, in Rol eNane role)

rai ses(Comon: : AccessDeni ed, |nvali dRole, RolelnUse,

Conmon: : CHART2Except i on);

/**

* Gets the functional rights currently assigned to a role.

*

* This nmethod will get the list of functional rights currently

* assigned to the specified role.

*

* @aramtoken - Access token of the invoking client.

* @aramrole - Nane of the role to get the rights of.

*

* @eturn - The functional rights currently assigned to the

* specified role.

*

* @xception Common:: AccessDeni ed - Thrown when the client does not

* have t he appropriate functiona

* rights to access this method.

* @xception InvalidRole - Thrown when the role does not exist in the
user

* dat abase.

* @xception Common: : CHART2Excepti on - Thrown when a general error
occurs.

*/
Functi onal Ri ght Li st get Rol eFuncti onal Ri ghts(i n Comon: : AccessToken
token, in Rol eNane role)
rai ses(Comon: : AccessDeni ed, |nvali dRol e, Conmon:: CHART2EXxcepti on);

/**

Sets the functional rights currently assigned to a role.

This method will set the Iist of functional rights currently
assigned to the specified role. After this method conpl etes,
the role will contain only the rights specified by this nethod.
The changes to the role will not take effect until the next tine
a user who has this role assigned |logs in.

@ar am token - Access token of the invoking client.
@aramrole - Nane of the role to get the rights of.

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this method.

@xception InvalidRole - Thrown when the role does not exist in the

¥ 0% %k 3k kX kX X X ¥ 3k X *

user

R1B1 High Level Design 8-55 02/25/00

*

*

occurs.

role,

*/

dat abase.
@xcepti on Conmon: : CHART2Exception - Thrown when a general error

voi d set Rol eFuncti onal Ri ghts(i n Comon: : AccessToken token, in Rol eNane
in Functional Ri ghtList rights)

rai ses(Comon: : AccessDeni ed, InvalidRole, InvalidFunctional Ri ght,

Conmon: : CHART2Except i on) ;

user

/**

* Gets the roles a user may perform

*

* This nmethod will get the nanmes of all roles that this user has

* been granted fromthe system user database

*

* @aramtoken - Access token of the invoking client.

* @aram user - Nanme of the user to get the roles of.

*

* @eturn - The current list of roles that the specified user may
* pl ay.

*

* @xception Comon:: AccessDeni ed - Thrown when the client does not
* have t he appropriate functiona
* rights to access this nethod.

*

* X

occurs.

user)

user

*/

@xception UnknownUser - Thrown when the user does not exist in the

dat abase.
@xception Conmon: : CHART2Exception - Thrown when a general error

Rol eLi st get User Rol es(i n Common: : AccessToken t oken, in Conmon:: User Nane

rai ses (Conmon: : AccessDeni ed, UnknownUser, Conmon:: CHART2Excepti on);

/**

L T R T R R S R B R

Sets the roles a user may perform

This method will set the list of roles that a user nay perform
This method differs fromgrantRole and revokeRole in that after it
conpl etes, the user will be assigned only those roles which were
specified in the roles paraneter. The user will not obtain

hi s/ her new rol e assignnents until the next |ogin.

@aram token - Access token of the invoking client.
@aram user - Name of the user to get the roles of.
@aramroles - List of all roles this user may play.

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this method.

@xception UnknownUser - Thrown when the user does not exist in the

dat abase.

R1B1 High Level Design 8-56 02/25/00

* @xception InvalidRole - Trhown when a role in the list of roles is
not

* in the system user database.

* @xception Common:: CHART2Excepti on - Thrown when a general error
occurs.

*/

voi d set User Rol es(in Common: : AccessToken token, in Conmon:: User Nane
user, in RolelList roles)

rai ses (Conmon: : AccessDeni ed, UnknownUser, I|nvalidRole,

Conmon: : CHART2Except i on);

/**

Changes the password for a user

This method will change a user's system password. The ol dPassword
parameter nust match the user's current system password.

@aram token - Access token of the invoking client.

@aram user - Name of the user to change the password of.
@ar am ol dPassword - Current password for the specified user
@ar am newPassword - New password for the specified user

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this nethod.

L T S T R T N

@xception UnknownUser - Thrown when the user does not exist in the
user
dat abase.

* *

* @xception IncorrectPassword - Thrown when the ol d password passed
does not

* mat ch the current password for the
user.

*

* @xception InvalidPassword - Thrown when the new password specified
i s not

val i d.

*

* @xception Common:: CHART2Excepti on - Thrown when a general error
occurs.

*/

voi d changeUser Password(in Common: : AccessToken token, in
Common: : User Nane nane,

i n Common: : Password ol dPassword, in
Conmon: : Passwor d newPasswor d)
rai ses(Comon: : AccessDeni ed, UnknownUser, |ncorrectPassword,
I nval i dPasswor d,
Conmon: : CHART2EXxcept i on) ;

/**

* Sets the password for a user.

*

R1B1 High Level Design 8-57 02/25/00

* This nmethod will change a user's system password. This version
requires

* the invoking client to have special functional rights because the
user's
current password i s not needed.

@ar am token - Access token of the invoking client.
@aram user - Name of the user to change the password of.
@ar am newPassword - New password for the specified user

@xception Conmon: : AccessDeni ed - Thrown when the client does not
have t he appropriate functiona
rights to access this method.

L S T S R

@xception UnknownUser - Thrown when the user does not exist in the
user
dat abase.

* %k

@xception |InvalidPassword - Thrown when the new password specified
i s not
* val i d.

@xception Conmon: : CHART2Exception - Thrown when a general error

occurs.

*/

voi d set User Password(i n Comon: : AccessToken token, in Conmon:: User Nane
nare,

i n Conmon: : Password new_pw)
rai ses(Comon: : AccessDeni ed, UnknownUser, I|nvalidPassword,

Conmon: : CHART2Except i on);

}s
s
#endi f

R1B1 High Level Design 8-58 02/25/00

	1
	1 - Introduction
	Purpose
	Objectives
	Scope
	Acronyms
	Design Process
	Design Tools
	Work Products

	2 - Software Architecture
	2.1 CORBA
	2.2 CORBA Services
	2.2.1 CORBA Event Service
	2.2.2 CORBA Trading Service

	2.4 Chart II Application Services

	3 – Use Cases
	4
	4 - Classes
	4.1 CommEnabled (Class)
	4.2 CommandStatus (Class)
	4.3 Dictionary (Class)
	4.4 DMS (Class)
	4.5 DMSFactory (Class)
	4.6 DMSFont (Class)
	4.7 DMSLibraryFactory (Class)
	4.8 DMS Message (Class)
	4.9 DMSMessageLibrary (Class)
	4.10 DMSStoredMsgItem (Class)
	4.11 FunctionalRight (Class)
	4.12 GUI (Class)
	4.13 MULTIStringDefaults (Class)
	4.14 OperationsCenter (Class)
	4.15 Organization (Class)
	4.16 Plan (Class)
	4.17 PlanFactory (Class)
	4.18 PlanItem (Class)
	4.19 Role (Class)
	4.20 SharedResource (Class)
	4.21 SharedResourceManager (Class)
	4.22 StoredDMSMessage (Class)
	4.23 User (Class)
	4.24 UserLoginSession (Class)
	4.25 UserManager (Class)

	5
	5 – Sequence Diagrams
	5.1 ActivatePlan:Basic (Sequence Diagram)
	5.2 AddBannedWord:Basic (Sequence Diagram)
	5.3 AddDMS:Basic (Sequence Diagram)
	5.4 AddPlan:Basic (Sequence Diagram)
	5.5 AddUser:AddUser (Sequence Diagram)
	5.6 BlankDMS:Basic (Sequence Diagram)
	5.7 ChangeUser:Basic (Sequence Diagram)
	5.8 CreateDMSMessageLibrary:Basic (Sequence Diagram)
	5.9 CreateDMSStoredMessage:Basic (Sequence Diagram)
	5.10 CreateNewRole:Basic (Sequence Diagram)
	5.11 DeleteDMS:Basic (Sequence Diagram)
	5.12 DeleteDMSMessageLibrary:Basic (Sequence Diagram)
	5.13 DeleteDMSStoredMessage:Basic (Sequence Diagram)
	5.14 DeletePlan:Basic (Sequence Diagram)
	5.15 DeleteRole:Basic (Sequence Diagram)
	5.16 DeleteUser:Basic (Sequence Diagram)
	5.17 ForceLogout:Basic (Sequence Diagram)
	5.18 GrantRole:Basic (Sequence Diagram)
	5.19 Login:Basic (Sequence Diagram)
	5.20 Logout:Basic (Sequence Diagram)
	5.21 ModifyDMSStoredMessage:Basic (Sequence Diagram)
	5.22 ModifyPlan:Basic (Sequence Diagram)
	5.23 ModifyRole:Basic (Sequence Diagram)
	5.24 MonitorControlledResources:Basic (Sequence Diagram)
	5.25 PollDMS:Basic (Sequence Diagram)
	5.26 RemoveBannedWord:Basic (Sequence Diagram)
	5.27 ResetDMS:Basic (Sequence Diagram)
	5.28 RevokeRole:Basic (Sequence Diagram)
	5.29 SetDMSLibraryName:Basic (Sequence Diagram)
	5.30 SetDMSMessage:Basic (Sequence Diagram)
	5.31 SetDMSName:Basic (Sequence Diagram)
	5.32 SetDMSOffline:Basic (Sequence Diagram)
	5.33 SetDMSOnline:Basic (Sequence Diagram)
	5.34 SetDMSPollingInterval:Basic (Sequence Diagram)
	5.35 TransferResponsibility:Basic (Sequence Diagram)
	5.36 ViewDMSStatus:Basic (Sequence Diagram)

	6 – Packaging
	7
	7 - Deployment
	8 – Interface Definition Language (IDL)

